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Abstract 
A shallow neural network was used to embed lipid structures in a 2- or 3-dimensional space 

with the goal that structurally similar species have similar vectors. Tests on complete lipid 

databanks show that the method automatically produces distributions which follow con-

ventional lipid classifications. The embedding is accompanied by the web-based software, 

Lipidome Projector. This displays user lipidomes as 2D or 3D scatterplots for quick explor-

atory analysis, quantitative comparison and interpretation at a structural level. Examples of 

published data sets were used for a qualitative comparison with literature interpretation.

Author summary
Lipids are not just the basis of membranes. They carry signals and metabolic energy. This 
means that the presence, absence, and quantity of lipids reflects a cell’s biochemical state 
- starving, nourished, sick or healthy. Lipidomics (measuring all lipids in a biological 
specimen) provides lists of the chemical species and their quantities.

We have used a shallow neural network from natural language modelling to embed lipids 
in a continuous vector space. Firstly, this means that similar molecules have similar 
positions in this space. Conventional lipid categories cluster automatically. Secondly, the 
accompanying web-based software, Lipidome Projector imports a lipidome and displays 
it as a set of points. Reading several lipidomes at once allows quantitative and structural 
comparisons. Combined with the ability to show structure and abundance diagrams, the 
software allows exploratory analysis and interpretation of lipidomics datasets.

Introduction
Lipids remind one of membranes or fats, but they also carry energy and signals, so one may 
assume that the set of lipids in a sample reflects the health and metabolic state of a tissue or 
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organism. Mass spectrometry provides lipidome information, but a list of 102-104 lipids and 
their quantities is not easily interpretable. For exploratory analysis, one would like a method 
that highlights chemical trends and shows how samples differ with respect to lipid structures 
and quantities. Given a set of mass spectrometry peaks that have been assigned to lipids, the 
idea is to display lipidomes as scatterplots in a 2- or 3-dimensional space. This requires two 
steps. First, there must be a continuous vector space such that each lipid gets distinct coor-
dinates. Second, one needs software to display and compare plots interactively. The software 
should make it easy to relate points back to their names and chemical structures.

The aims here are different to those of other lipidomics software packages. If one wants 
to treat a lipidome similarly to gene expression data, one can look for changed levels of lipids 
or focus on molecules whose abundances are correlated [1–3]. If one wants to see a lipidome 
in terms of networks, there is network construction and display software [4]. Our focus is 
different. Lipidome Projector lets one quickly highlight and interactively explore differences 
between groups of samples, with the simultaneous display of abundances and structures.

The first challenge is finding vectors for molecules for the two- and three-dimensional 
plots. Previous attempts applied ideas from string comparisons [5], but this was not without 
problems. Whatever notation one uses, a small change to a molecule can lead to a large change 
in a string representation such as SMILES [6], so the similarity metrics are fundamentally 
unstable. Kopczynski et al approached the problem with elegant distance metrics, but this 
required some preconceptions about lipid structures and used expensive graph similarity 
methods [7].

We come to the problem with slightly different ideas and some specific goals. The method 
should be objective, unsupervised and require minimal chemical preconceptions. Coordinates 
should be quite different for unrelated molecules, but systematic changes such as extending the 
length of an aliphatic chain should give a series of points near each other. Adding a phosphate or 
alcohol group to two different molecules should change both coordinates in a similar manner. 
Our method for lipids is a reimplemented and adjusted version of Mol2Vec [8], a technique 
from the small-molecule literature which is, in turn, based on Word2Vec [9] a word embedding 
method from natural language processing. To embed words, one first defines a vocabulary and 
gives each word a unique token. In a text corpus, similar tokens appear in similar contexts with 
reasonable probability, such that a token/ context prediction task can be used to train semantic 
vector representations. To apply the idea in chemistry, one constructs a vocabulary of chemical 
fragments and trains a shallow network on a large set of molecules to recognise surrounding 
contexts. Input fragments are represented by integer identifiers derived from computed sparse 
connectivity fingerprints [10]. Fragment vectors come from hidden layer weights of the trained 
network and are summed to produce vector representations of entire molecules.

Calculating the vector space model is performed once on a large set of lipid structures and 
takes several hours. User lipidome data is simply matched to precomputed vectors. Lipidome 
Projector, the browser-based application for visualization and analysis, allows one to interac-
tively explore lipidomes in the vector space and additionally displays lipid abundance charts 
and molecular structures.

To judge our methods, we consider the distributions of lipids in the computed vector space 
and apply Lipidome Projector visualizations on three published lipidome datasets.

Materials and methods

Lipid vector space
For training, the Lipid Maps Structure Database (LMSD) [11] and SwissLipids [12] (both 
accessed Jan 2023) were combined. SwissLipids entries were filtered to obtain lipids with valid 
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SMILES at isomeric subspecies level. The combination of databases resulted in over 620 000 
unique structures. RDKit [13] was used to convert all database entries to a consistent charge 
state and RDKit’s implementation of extended connectivity fingerprints [10] was used to 
assign a unique identifier to each substructure of a specified radius around each atom. Sub-
structure identifiers were ordered according to the position of the substructure’s central atom 
within the molecule’s canonical SMILES string.

Our implementation makes a few necessary modifications to Mol2Vec’s model. RDKit’s 
function for the computation of fingerprints for the generation of substructure identifiers was 
parameterised to use chirality. No rare substructures were filtered or replaced by a special token. 
Finally, a parameter had to be adapted to capture differences in long alkyl chains. Mol2Vec 
descriptors for small molecules were built from fragments using atoms (radius 0) and their 
immediate neighbours (radius 1). For our much larger lipid structures, radii of size 0, 1, 2, 3, 4, 5, 
10, 15, 20, 25, 30, 35, 40, 45 and 50 were used, resulting in just under three million unique frag-
ments for the combination of databases. This means, that for each lipid, the set of fragments for 
each radius had to be used as a separate training sentence to avoid fragments of vastly different 
sizes being put together as training pairs in Word2Vec’s sliding window training data generation.

Gensim [14] was used to train the Word2Vec model with training parameters listed in S1 
Table. The network generated 100-dimensional substructure vectors, which were summed 
for each molecule. For visualization, the Barnes-Hut [15] version of t-distributed stochas-
tic neighbour embedding [16] as implemented in OpenTSNE [17] was used to reduce the 
100-dimensional vector space to 2- and 3-dimensional vector sets. PCA initialization was used 
to improve reproducibility and attempt to preserve global structure [18] (the remaining signif-
icant parameters are in S2 Table). The embedding process is summarised in Fig 1A.

Lipidome processing
As part of building the system, entries from the lipid databases are stored along with their cor-
responding vectors and higher-level abbreviations for each isomer following previously defined 
levels [19]. When a user lipidome is imported, entries are matched against pre-calculated vectors 
(Fig 1B). Goslin [20] is used to parse both databases and user data. It accepts common nomen-
clature, but should it fail, the process will look for a match based on user-provided names. This 
means that Lipidome Projector covers at least all entries from the union of SwissLipids and the 
LMSD that were successfully parsed by Goslin (S1 Dataset gives a list of translated class names).

Mass spectrometry often does not identify a lipid at the complete structure level [19] so 
additional steps are necessary to deal with this ambiguity. The software finds the set of iso-
mers that match the higher-level abbreviation, but not all members of this set will be plausible 
for the organism under consideration. To filter the list of possible lipids, Lipidome Projector 
expects a constraints list with allowed fatty acyls and long-chain bases. The remaining isomer 
vectors are averaged to produce a single representative vector.

Visualization and analysis software
Plots are generated using Plotly.py [21]. Marker sizes are derived from lipid abundances, to 
which either linear or min-max scaling is applied. Dash [21] was used to build the web- 
application front end. The rest of the application was built in Python [22] with pandas [23] 
used for data-table storage and manipulation. Parsing and matching are performed server-side. 
The original lipidome dataset together with the newly derived lipid names and computed 
vectors is stored inside the user’s browser session and sent to the server for temporary process-
ing operations such as averaging of sample groups, computation of Log2FC values between 
samples, or plot updates. Lipidome datasets and constraints are read in a simple table format.
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Fig 1.  Vector Space Generation and Matching. (A) A lipid structure is decomposed into its substructures of different sizes represented by Morgan 
sparse fingerprint integers, which constitute the training data for Word2Vec. A molecule’s vector is the sum of its substructure vectors and is projected to 
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Datasets
Publicly available lipidome datasets from drosophila [24], yeast [25] and mouse [26] were 
used for development and analysed as user cases. Python scripts for the extraction of the orig-
inal data and formatting into formats appropriate for Lipidome Projector, as well as manually 
constructed respective FA and LCB constraint files are given in S2 Dataset.

Results

Lipid vector space
We first consider the projection of lipids into a vector space by looking at the distributions of 
points for entries from the combined databases with a valid structure and class. Are the vectors 
consistent with chemical intuition and database classification? Fig 2A shows the entire lipid set 
in two dimensions (see S1 Fig for 3D version). With some exceptions, lipids within a category 
are grouped together in the vector space despite the underlying structural diversity. For the 
largest categories, glycerolipids (GL), glycerophospholipids (GP) and sphingolipids (SP) a clear 
separation can be observed with some overlap and outliers at some borders. To look in more 
detail, one can focus on the class level with the example of selected glycerophospholipid classes. 
Fig 2B marks three clusters, which largely correspond to diacyl, mono-alkyl and plasmalogen 
glycerophospholipids respectively. This suggests that the embedding has mostly captured the 
chemical connectivity at the glycerol. Within each large cluster, phosphatidylinositols (PI) 
and phosphatidylcholines (PC) form their own subgroups with some local exceptions. For the 
other classes there are numerous smaller, intertwined clusters spread across the vector space. 
Also marked are a few unusual molecules with uncommon fatty acyl double bond structures 
such as (5E, 9E) or chains which are heavily methylated or even contain ladderane, a structural 
moiety seen in bacteria. These are positioned outside the main group as one might expect since 
the database is dominated by the biochemistry of mammals. The remaining plots in Fig 2 show 
how the lipid vectors capture chemical functional groups and their structural context. In Fig 
2C there is a general trend of more double bonds from left to right. Focusing on a local region 
shows that clustering is determined by lipid class (Fig 2D) and fatty acyl double bond location 
and number (Fig 2E). Additionally, one can see a systematic change in mass as one moves 
along clusters (Fig 2F). These patterns suggest that the embedding captures gradual structural 
changes. This was further assessed using a contrived example borrowed from the literature 
[5]. Three sets of manually generated structures were added to the training data. The first two 
consist of series of phosphatidylinositols with a successively longer fatty acyl chain. The sets are 
the same, except for the presence/ absence of a double bond in the lengthening chain. Fig 3A 
shows that growing an aliphatic chain gives progressively changing vector positions, while the 
presence of the double bond leads to a large, but consistent displacement. The third set consists 
of a series of ceramides, each of which is hydroxylated at a different position within its fatty acyl 
chain (Fig 3B). The steps of the hydroxylated position translate into an almost linear series of 
vectors with the exception of an outlier near the acyl bond.

Another aspect of the quality of the vector space is its coverage of lipid classes, fatty acyls, 
and long-chain bases, which in our case, is completely dependent on the underlying databases 
and the parser. When lipidomes are imported, entries are discarded if they cannot be matched 

2D or 3D with stochastic neighbour embedding. (B) The user provides a list of lipid species names and component constraints. Lipid names are parsed 
and matched to appropriate isomer names from the pre-parsed database. The component constraints are applied to filter the matches. Vectors of the 
remaining isomers are averaged for each lipid. Not illustrated is an additional step, in which database matching is attempted on the original names of 
unparsed lipid species.

https://doi.org/10.1371/journal.pcbi.1012892.g001

https://doi.org/10.1371/journal.pcbi.1012892.g001
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Fig 2.  Vector Space (2D). (A) Entire vector space. Marker colour represents lipid category: Fatty acids (FA), glycerolipids 
(GL), glycerophospholipids (GP), sphingolipids (SP), sterol lipids (ST), prenol lipids (PR), saccharolipids (SL) and polyketides 
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or if they are rejected by the constraint-based filtering. For the three example literature data-
sets used here, we implemented plausible FA/ LCB constraints and performed the matching to 
the database. Reasonable manual preprocessing steps, such as re-formatting the data, remov-
ing duplicate entries, and adjusting unusual nomenclature were performed beforehand, and 
are available as Python scripts in S2 Dataset. The processing statistics are listed in Table 1.

Visualization
One has to look at complete databases to judge the vector space and embedding of lipids. A user, 
however, would be interested in what can be seen in their lipidome. We take three examples from the 
literature and look at the scatterplots in the light of the biochemistry noted by the original authors.

The first dataset consists of lipidomes of different Drosophila melanogaster larval tissue 
types (brain, fat body, gut, lipoprotein, salivary gland, wing disc) fed with different diets (plant 
food or yeast food) [24]. For our quick analysis, we averaged the lipidome samples by tissue 
type. Carvalho et al noted that hexosyl ceramides (HexCer) and ether glycerophospholipids 
(O-) were only detected in gut and brain tissues respectively [24]. Fig 4A shows how this kind 
of feature can be easily observed and highlighted. Fig 4B displays a comparison of fat body 
and lipoprotein tissue types focused on a glycerolipid region and highlights the expected large 

Fig 3.  Impact of Stepwise Structural Changes. (A) Local vector space region of manually added phosphatidylinositol structures. Marker annotations denote 
the length of the 2-sn fatty acyl. (B) Local vector space region of manually added ceramide structures. Marker annotations denote the fatty acyl hydroxylation 
position.

https://doi.org/10.1371/journal.pcbi.1012892.g003

(PK). (B) Region of the vector space focused on selected glycerophospholipids: Glycerophosphates (PA), glycerophosphocho-
lines (PC), glycerophosphoethanolamines (PE), glycerophosphoglycerols (PG), glycerophosphoinositols (PI) and glycerophos-
phoserines (PS). Marker colour: Lipid class. (C) Same region as in B, marker colour represents the number of fatty acyl double 
bonds. (D) Zoomed-in region of selected glycerophospholipids, marker colour represents lipid class. (E) Same region as in 
D, marker colour represents the double bond profile of the 2-sn fatty acyl. (F) Same region as in D, marker colour represents 
molecule mass. See S3 Dataset for interactive HTML.

https://doi.org/10.1371/journal.pcbi.1012892.g002

https://doi.org/10.1371/journal.pcbi.1012892.g003
https://doi.org/10.1371/journal.pcbi.1012892.g002
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amounts of triacylglycerol (TG) species in the fat body and conversely an overabundance of 
diacylglycerols (DG) in the lipoprotein tissue, both noted in the original publication.

The second example is focussed on a yeast study comparing the wildtype strain (BY4741) 
and mutants that were defective in fatty acyl elongation (Elo1, Elo2, Elo3) [25]. Two different 
growth temperatures (24°C and 37°C) were considered. The study showed that the Elo2 and 
Elo3 strains produce sphingolipids with shorter fatty acyl chains. We averaged the samples 
by strain, filtered Elo1, and projected the full results onto our vector space (Fig 4C). Fig 4D 
displays sphingolipid abundances from the wildtype strain compared to average abundances 
from the Elo2 and Elo3 group, clearly showing that species with short fatty acyls (=< 22 chain 
length) occur exclusively in higher amounts in these mutant strains.

The third dataset is taken from a study of LAMP3-deficient mice, evaluating the role of 
this protein in the lung [26]. The two different conditions genotype (wildtype/ LAMP3-KO) 
and challenge (none/ allergen induced asthma) resulted in four groups of mice. Fig 4E and 4F 
show that if we group the samples by genotype and challenge, average the lipids abundance 
values across samples in each group, and compare the wildtype to the LAMP3-KO genotypes 
in the asthma group, there is a large reduction in phosphatidylglycerols in the LAMP3-KO 
group, as noted by the authors. Fig 4E also shows the increased abundance of diacylglycerols 
and decreased amounts of certain sphingolipids and phosphatidylinositols in the wildtype 
group.

Discussion
There are two aspects to this work. Firstly, there is the fundamental embedding of mol-
ecules in a low-dimensional space. Secondly, there are practical issues and the software 
implementation.

From the point of view of the vector space, there are some surprising observations. The 
lipid coordinates agree with chemical intuition, although the training was completely unsu-
pervised. Not only were classic lipid categories separated, but unusual structures were given 
coordinates on the edges of the common lipid classes (Fig 2B). The local and global structure 
of the embedding is interesting. Globally, the space separates broad classes, but locally it 
reflects chemical detail. It is remarkable that moving a hydroxylation along a chain gives a set 
of points near each other that appear to lie on a smooth curve. There is reason to say this is 
unexpected. Consider the space as first calculated in 100 dimensions. Maybe there are direc-
tions corresponding to phosphorylation, chain extension, moving bonds and other chemical 
properties. When we project the space to two or three dimensions, one will inevitably lose 
information. The local structure is a tribute to stochastic nearest neighbour-embedding rather 
than any invention on our part.

We must concede that this exercise has little geometrical rigour. The embedding might 
maintain local relationships in the two-dimensional space, but longer-range distances are 
compressed or extended. Given the method’s emphasis on a point’s neighbourhood, a densely 
populated region in 100-dimensional space is treated differently to a sparse region. Neigh-
bouring regions are likely to end up with inconsistent orientations. One could see this as a 
weakness [27] but Lipidome Projector is a visualisation tool. One can regard the projections 

Table 1.  Matching statistics for development datasets.

Dataset Num. lipids Successfully matched Parsed - not matched Not parsed - not matched Filtered
Drosophila 359 324 (90.3%) 9 (2.5%) 4 (1.1%) 22 (6.1%)
Yeast 249 235 (94.4%) 14 (5.6%) 0 0
LAMP3 209 199 (95.2%) 3 (1.4%) 0 7 (3.3%)

https://doi.org/10.1371/journal.pcbi.1012892.t001

https://doi.org/10.1371/journal.pcbi.1012892.t001
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Fig 4.  Lipidome Dataset Projections. (A) Drosophila dataset averaged over tissue type. HexCer and ether-linked GPs are only 
present in gut and brain tissues respectively. Min-max scaling of abundances was used to calculate marker area. (B) Drosophila 
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as no more than an artistic or practical representation of the higher-dimensional space [28]. 
Calculations such as cluster analysis or lipidome homology should be done in the 100- 
dimensional space since this is geometrically our best construction. The embedding also 
reflects biases in the training set due to the selection of classes present in the chosen databases 
and their respective sizes. Lipids with more fatty acyls (e.g., Triacylglycerols or Cardiolipins) 
inherently dominate combinatorically generated datasets. Finally, we know that different 
molecules always have different coordinates, but since marker sizes are scaled relative to abun-
dances, it is inevitable that points will occasionally obscure each other.

There are also differences compared to other vector spaces for lipids. Marella et al calcu-
lated the differences between molecules using the distances between string representations of 
the molecules [5]. This suffers from the instability of string representations. Kopczynski et al 
avoided this problem by using graph-based similarity [7]. There is a less obvious difference 
between the methods. Kopczynski et al calculated distances between lipids and used principal 
component analysis (PCA) to get low dimensional coordinates from the distance matrix [7]. 
This is deterministic, but discarding everything after the first few eigenvectors is a brutal trun-
cation. Applying PCA to our 100-dimensional coordinates, we cover only 56% of the variance 
with the first two principal components and only 71% with the first three. 90% of the variance 
is only reached with the first 15 principal components. Clearly, the intrinsic dimensionality 
of the 100-dimensional space is higher than the two or three dimensions we reduce it to. To 
make this point, one can estimate the intrinsic dimensionality with an implementation [29] 
of an established PCA-based approach [30]. Here, the intrinsic dimensionality is the number 
of normalized eigenvalues larger than a threshold value (here 0.05). This yields 6. The same 
computation performed for each individual vector and its 100 nearest neighbours results in 
an average intrinsic dimensionality of 12.5. Projecting the previously considered region of 
glycerophospholipids onto the first principal components confirms the noted general trends 
of organization by number of fatty acyl double bonds (S2C Fig) and mass (S2D Fig). Lipid 
classes, however, overlap entirely in two dimensions (S2A Fig) and only begin to separate into 
distinct slices with the inclusion of the third (S2B Fig). One can say that t-SNE is a compro-
mise, but in the light of these results, it is effective in conveying different influences (class, 
fatty acyl features, mass) in a low dimensional representation.

Kopczynski et al’s approach does admit one feature that we lack. We construct a space 
based on all known lipids and then show all lipidomes in this context. In contrast, Kopczysnki 
et al build a new space for each set of lipidomes [7]. This allows them to construct a very natu-
ral measure for the similarity of lipidomes and lends itself to clustering of datasets.

Continuing in this self-critical vein, the non-determinism of our approach might be con-
sidered a disadvantage. Repeating the training and dimensional reduction always gives slightly 
different results. With more training time or different parameters, one might get even better 
results. Having experimented in this direction, we suspect that this is not a useful pursuit. It 
would be more profitable to consider completely different strategies. We see graph convolu-
tional networks as a more natural fit to molecular structures [31] and one could experiment 
with novel dimensionality reduction methods such as UMAP [32].

dataset zoomed in to a glycerolipid region of the vector space showing selected tissue samples (same marker scaling as in A). (C) 
Yeast lipidomes – comparison between the means of the wildtype and the Elo2 and Elo3 strains with min-max marker scaling. 
(D) Yeast dataset zoomed in on a region of partially annotated sphingolipids (same marker scaling as in C). Elo2 and Elo3 strains 
contain species with shorter fatty acyls. (E) Mouse lung lipidome dataset lipids coloured by the log2 abundance fold change between 
the wildtype and LAMP3-KO asthma conditions. Certain lipids with relatively high change values are annotated. (F) PG region 
comparison between wildtype and LAMP3-KO asthma conditions. Linear scaling applied to marker sizes. See S3 Dataset for inter-
active HTML.

https://doi.org/10.1371/journal.pcbi.1012892.g004

https://doi.org/10.1371/journal.pcbi.1012892.g004
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Besides the embedding, other issues should be addressed. We are not the first group 
to lament the inherent inconsistency of lipid nomenclature [19]. Synonyms such as 
SM(d18:1/14:0) and SM 18:1;2/14:0 are tedious but can be handled mechanically by packages 
such as Goslin. A more fundamental problem are lipid notation ambiguities which cannot be 
solved by any parser.

In this study we encountered ambiguities in the position, number and precise location 
of double bonds and hydroxylations of sphingolipids. Some line notations would allow one 
to denote some ambiguities [33], but lipidome data is typically not stored in such formats. 
Another problem is that a user lipidome may contain species that are not in the training set 
(SwissLipids + LMSD). This problem will be alleviated when we implement an on-the-fly 
method to generate structures and respective vectors from nomenclature only.

The second half of this work is the software. With the vector space precomputed, it is not 
too demanding to run on an ordinary laptop. The web application stores lipidome data on the 
client side and sends it to the server for processing operations. This does require a fair amount 
of client-server communication, but we are currently moving more processing tasks to the 
client’s browser. User interfaces and encoding data are also a matter of taste. For example, we 
concede that the compact representation of relative abundances might seem foreign to a user.

There are clear directions for the future. There will be improvements to the underlying vec-
tor space as we experiment with the embedding model and as the databases are updated. The 
software also benefits automatically from the evolution of the Goslin parsing package [20]. 
The interface and display straddle taste and usability. A colour-blind-friendly palette is neces-
sary, as is overlap removal. Different kinds of abundance displays will improve with more user 
feedback. Finally, we plan proper integration with biochemical pathway software. As it stands, 
the vector space is conceptually useful, and the software fills a practical niche.

Supporting information
S1 Fig.  Vector Space (3D). (A) Projection of the entire vector space. Marker colour rep-
resents lipid category: Fatty acids (FA), glycerolipids (GL), glycerophospholipids (GP), 
sphingolipids (SP), sterol lipids (ST), prenol lipids (PR), saccharolipids (SL) and polyketides 
(PK). (B) Region of the vector space focused on a set of selected glycerophospholipids: 
Glycerophosphates (PA), glycerophosphocholines (PC), glycerophosphoethanolamines (PE), 
glycerophosphoglycerols (PG), glycerophosphoinositols (PI) and glycerophosphoserines (PS). 
Marker colour: Lipid class. (C) Same region as in B. Marker colour: Number of fatty acyl dou-
ble bonds. (D) Zoomed in region of selected glycerophospholipids. Marker colour: Lipid class. 
(E) Same region as in D. Marker colour: Double bond profile of the 2-sn fatty acyl. (F) Same 
region as in D. Marker colour: Molecule mass. See S3 Dataset for interactive HTML.
(TIF)

S2 Fig.  PCA Vector Space Region. (A) Region of the vector space focused on a set of selected 
glycerophospholipids: Glycerophosphates (PA), glycerophosphocholines (PC), glycero-
phosphoethanolamines (PE), glycerophosphoglycerols (PG), glycerophosphoinositols (PI) 
and glycerophosphoserines (PS). Axes correspond to the first two principal components. (B) 
Same region and colours as in A. Axes correspond to the first three principal components. (C) 
Same region and axes as in B. Marker colour: Number of fatty acyl double bonds. (D) Same 
region and axes as in B. Marker colour: Molecule mass. See S3 Dataset for interactive HTML.
(TIF)

S1 Table.  Word2Vec Embedding Parameters. 
(DOCX)

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012892.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012892.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012892.s003
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S2 Table.  Stochastic Neighbour Embedding Parameters. 
(DOCX)

S1 Dataset.  List of classes present in LMSD and SwissLipids recognised by the Goslin 
parser in translated representation. 
(ZIP)

S2 Dataset.  Python scripts with instructions for the extraction and transformation of 
original datasets; Transformed datasets; Dataset FA/ LCB constraints. 
(ZIP)

S3 Dataset.  Partially interactive HTMLs of vector space and dataset projection scatter 
plots. 
(ZIP)
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