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Abstract

Background: The prediction of sites and products of metabolism in xenobiotic compounds is key to the
development of new chemical entities, where screening potential metabolites for toxicity or unwanted side-effects is
of crucial importance. In this work 2D topological fingerprints are used to encode atomic sites and three probabilistic
machine learning methods are applied: Parzen-Rosenblatt Window (PRW), Naive Bayesian (NB) and a novel approach
called RASCAL (Random Attribute Subsampling Classification ALgorithm). These are implemented by randomly
subsampling descriptor space to alleviate the problem often suffered by data mining methods of having to exactly
match fingerprints, and in the case of PRW by measuring a distance between feature vectors rather than exact
matching. The classifiers have been implemented in CUDA/C++ to exploit the parallel architecture of graphical
processing units (GPUs) and is freely available in a public repository.

Results: It is shown that for PRW a SoM (Site of Metabolism) is identified in the top two predictions for 85%, 91% and
88% of the CYP 3A4, 2D6 and 2C9 data sets respectively, with RASCAL giving similar performance of 83%, 91% and
88%, respectively. These results put PRW and RASCAL performance ahead of NB which gave a much lower
classification performance of 51%, 73% and 74%, respectively.

Conclusions: 2D topological fingerprints calculated to a bond depth of 4-6 contain sufficient information to allow the
identification of SoMs using classifiers based on relatively small data sets. Thus, the machine learning methods outlined
in this paper are conceptually simpler and more efficient than other methods tested and the use of simple topological
descriptors derived from 2D structure give results competitive with other approaches using more expensive quantum
chemical descriptors. The descriptor space subsampling approach and ensemble methodology allow the methods to
be applied to molecules more distant from the training data where data mining would be more likely to fail due to
the lack of common fingerprints. The RASCAL algorithm is shown to give equivalent classification performance to
PRW but at lower computational expense allowing it to be applied more efficiently in the ensemble scheme.
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Background
The prediction of sites and products of metabolism for
xenobiotic and endogenous compounds is an impor-
tant avenue of research, playing an influential role in
the development and use of pharmaceuticals, cosmet-
ics, nutritional supplements and agrochemicals. Toxicity
of metabolites can play a major role in the withdrawal
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of new drugs or black-box warnings, contributing to the
high attrition rates in the development of new chemical
entities.

The cytochrome P450s (CYPs) are a family of heme-
containing enzymes involved in the phase-I metabolism of
over 90% of drugs on the market [1,2]. The CYP family of
enzymes consists of 57 isoforms with the majority of bio-
transformations in mammals facilitated by the CYP 3A4
isoform, followed by 2D6 and 2C9.

The most common reactions catalysed by CYPs involve
the insertion of a single oxygen into an organic molecule
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giving rise to C=C epoxidation, aromatic C oxidation, S
oxidation and C-H hydroxylation reactions, the last exam-
ple often leading to N-dealkylation or O-dealkylation if
oxidation occurs on a suitable leaving group in an amine
or ether moiety.

A host of computational approaches to predict SoMs
have been developed as an alternative or aid to the
resource and time consuming nature of experimental
investigation. These approaches can be either ligand-
based, where the structures and properties of known
substrates or non-substrates are modelled to develop
structure-activity relationships, or structure-based, where
the structure of the metabolising CYP enzyme and
its interactions with ligands are modelled. The reader
is referred to the many comprehensive review papers
[3-7] for an overview of the current computational tools
to predict SoMs.

Many methods consider reactivity and accessibility fac-
tors since a SoM must be sufficiently reactive and also able
to come into close proximity to the reactive heme centre.
One such example is SMARTCyp [8], a Java-based SoM
predictor that uses a database of activation energies for
various pre-defined ligand fragments to assign reactivity
estimates to matching moieties in a query ligand, with an
accessibility descriptor used to tune the ranking.

Other methods take the accessibility consideration
further and employ docking techniques to refine the pre-
dictions from reactivity approaches. Examples of these
methods include IMPACTS [9], which combines dock-
ing with a fragment based reactivity approach, and a
recently published approach [10] that makes use of a teth-
ered docking methodology using GOLD [11] combined
with a reactivity approach based on hydrogen bond order
descriptors and a novel implementation of the average
local ionisation energy.

In contrast to these approaches the methods described
in this work do not require the explicit modelling of ligand
binding or reactivity, but make use of machine learning
techniques applied to an appropriate, representative data
set. Various machine learning methods have been applied
to the problem of SoM metabolism with some of the major
contributions summarised below.

An example of a data-mining approach is MetaPrint2D
[12], an online metabolism prediction tool trained on
the Accelrys Metabolite Database [13] that makes SoM
predictions based on occurrence counts of atomic fin-
gerprints within the database where they appear as SoM
versus non-SoM. If matching sites are not found in the
database, Metaprint2D informs the user and makes no
predictions rather than extrapolating beyond its domain
of applicability.

Many methods employing machine learning techniques
generate a wide-range of descriptors for each atomic
site in the data set often including quantum chemical

and electronic descriptors. An example is RegioSelectivity
(RS)-predictor [14,15] which uses a Support Vector
Machine (SVM) to predict SoM using 148 topological and
392 quantum chemical atomic descriptors where some of
these descriptors are modified to include contributions
from neighbouring atoms. A neural network approach
called Xenosite [16] has also been applied to this descrip-
tor set but combined with other molecular descriptors and
fingerprint descriptors based on the Daylight [17] defini-
tion. A probability score that each atomic site is a SoM
is obtained allowing the different sites in the molecule
to be ranked with improved predictive performance over
(RS)-predictor reported.

Another study [18] combines descriptors based on the
electronic structure of the molecule with explicitly cal-
culated activation energies [19,20], and also incorporates
Solvent Accessible Surface Area (SASA) descriptors cal-
culated using MOE [21]. Classification of the atomic sites
in the data set into SoMs and non-SoMs was performed
using random forest/ensemble decision trees, with the
activation energy shown to be the most important in
determining SoM.

A further method [22] with relevance to small endoge-
nous molecules makes use of the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway database [23]
where 4843 reactions were classified into 80 classes.
SMARTS patterns were used to define chemical substruc-
tures (reaction centres and surrounding regions) with
various descriptors used to encode these sites including
electronic, energetic, topological, distance and steric. For
each reaction centre a SVM binary classification model
was trained and the score obtained for each potential
SoM in a query molecule was used to rank the candidate
reaction centres.

The computational expense of using quantum chemi-
cal descriptors is addressed by FAME [24], a metabolism
prediction tool that applies random forest models to the
Metabolite [13] database. It calculates atomic descrip-
tors using the CDK [25] relating to charge and molecular
topology and generates SoM predictions in a few seconds
per molecule. FAME has other benefits since it is not just
a predictor of CYP metabolism but reflects the broader
enzyme reactions documented in the Metabolite database
and can be filtered for Phase-I and Phase-II metabolism in
human, rat and dog.

A recent publication [26] describes an approach to SoM
prediction that applies the PASS algorithm to atom envi-
ronment fingerprints encoded with 2D descriptors. This
allows the method to be faster than those methods that
must first generate 3D structures to calculate quantum
chemical descriptors and gives results that are competitive
with RS-Predictor and SMARTCyp.

This paper takes a similar approach using the 2D topo-
logical circular fingerprint [27,28] of atomic sites within a
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molecule as the sole descriptor making the method com-
putationally less expensive than those that use 3D descrip-
tors. Three probabilistic classifiers have been applied to
the problem of xenobiotic SoM prediction: the Naive
Bayesian (NB), the Parzen-Rosenblatt Window (PRW)
and a novel method called RASCAL (Random Attribute
Subsampling Classification Algorithm) that will be pre-
sented in the Methods section. In all classifiers the
machine learning technique was applied on an ensem-
ble basis by randomly subsampling descriptor space and
treating each sub-classifier as one vote in an overall
classification.

The kernelised nature of the PRW and RASCAL
algorithms allied with the ensemble approach lends itself
to a parallel implementation exploiting the massively par-
allel processing capability of Graphical Processing Units
(GPUs). The computing industry is moving towards a par-
allel model as the limitations and capabilities of modern
semiconductor manufacturing mean that ever increas-
ing performance from a single processor is no longer
possible [29]. In recent years, GPUs have become increas-
ingly competitive with regard to programmability, speed
and price, with the release of CUDA (Compute Unified
Device Architecture) providing a standard C-like inter-
face allowing scientists to exploit the parallel power of
the GPU. The CUDA model operates by launching blocks
of threads that are executed on stream multiprocessors
(SMs) concurrently. Threads and blocks can be referred to
by identification numbers allowing each to operate on a
different portion of the data, where threads in a common
block can communicate via a localised shared memory.

Recent developments in GPU accelerated classifica-
tion tools include implementations for support vector
machines [30-32], neural networks [33], k-nearest neigh-
bours [34] and a parallel tool for the classification of
remotely sensed imagery [35]. The techniques described
in these studies could lead to similar efficiency gains when
applied to cheminformatics classification problems and in
the remainder of this paper GPU accelerated probabilistic
classifiers are applied to the problem of SoM identifica-
tion. The CUDA implementation released as part of this
work could be applied to other binary or multi-class data
sets, where in the case of RASCAL and NB the feature
vectors would need to consist of integer or binary val-
ues. It is hoped that this implementation would be of
interest to members of the cheminformatics community
applying classification approaches to large data sets where
performance is hindered by high computational demands.

In the Methods section the data sets and descriptors
are presented, along with the three probabilistic classi-
fiers (PRW, RASCAL and NB) and a discussion of the
CUDA implementation. In the Results section the classifi-
cation performance of the different methods is presented
in terms of the Matthews Correlation Coefficient (MCC),

area under the ROC curve and the percentage of the data
sets where a SoM is identified in the top k positions.
The effect of varying the size of the circular fingerprints
used to describe atomic sites is investigated and a bench-
marking analysis comparing the speed performance of
the CUDA implementation on a Tesla C2075 GPU and
a GeForce GT640 GPU to reference is presented. The
important inferences from this work are presented in the
Conclusions section.

To emphasize the benefits and novel aspects of this
work it is important to point out that the SoM prediction
models are built from 2D topological circular fingerprints
without the requirement for complex quantum chemical
and 3D descriptors. RASCAL combines the classifica-
tion performance of the PRW with greater computational
speed and hence could be applied to other much larger
data sets. The data sets employed here are relatively small
and show that SoMs can be identified within data sets of
the order of 100’s of molecules being of potential inter-
est to pharmaceutical companies with limited data on a
specific series of molecules.

Experimental
Data sets
The machine learning approaches used in this study have
been applied to the publicly available CYP 3A4, 2D6 and
2C9 data sets that originate from those initially released in
the supporting information of the RS-Predictor paper [15]
but further curated [9] with reference to the primary lit-
erature to identify and eliminate conflicting information.
Open Babel v2.3.1 [36] was used to generate the proto-
nation state of each ligand at pH 7.4 and the mol2 files
generated are made available in the Additional files. The
data sets have been sampled on a leave-one-out-cross-
validation basis to generate results that are comparable
with other reported methods [16].

The feature vectors used to describe the atomic sites
in each molecule are 2D topological circular fingerprints
[27,28] based on the occurrence counts of SYBYL [37]
atom types at different topological distances from the
atom in question (see Figure 1 for a pictorial representa-
tion of the construction of these fingerprints). The size
of the circular fingerprints can be varied by choosing dif-
ferent bond depths and for this study separate training
sets were created for bond depths ranging from 0-8, thus
allowing the impact of bond depth on classification per-
formance to be assessed. A Java program was written to
read in the data sets in mol2 [13] format and generate the
circular fingerprints creating two classes: those circular
fingerprints associated with a SoM and those not asso-
ciated with a SoM. The circular fingerprints assigned to
these two classes for each data set and bond depth were
used as the inputs to the machine learning approaches
described in this work. The data sets for each isoform for
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Figure 1 Topological circular fingerprints. Graphic to represent the construction of a circular fingerprint to a bond depth, d, of 6 using counts of
SYBYL atom types at each level.

bond depths ranging from 4-6 are made available in the
Additional files section in Additional files 1, 2, 3, 4, 5, 6,
7, 8 and 9. The mol2 files used to generate these circular
fingerprints are also made available in the Additional files
section in Additional files 10, 11 and 12.

SoM prediction
The SoM classification performance of each approach
described in the Methods section was assessed for each
isoform data set using feature vectors calculated at each
of the bond depths ranging from 0-8. These methods have
been implemented on an ensemble subsampling method-
ology, hence as described previously the length of the
subsample, q, needs to be optimised. Therefore, for each

classification model q was varied from an initial value of
5 to the full number of features L in increments of 5, with
the Matthews Correlation Coefficient (MCC) [38] and the
area under ROC curves used to compare classification
performance. Selection of the j parameter is a balance
between sufficiently sampling feature space versus com-
putational load, with a value of 201 found to be suitable
in this case. The graphs shown in Figure 2 show classifi-
cation performance against j for models with q = 40 and
bond depth ranging from 4-6 and show that by j = 201 the
classification performance has largely reached a plateau.

In this way the probability that an atomic site is a SoM
can be calculated allowing all sites in a molecule to be
ranked. The percentage of the data set where a SoM is

Figure 2 Impact of number of subsamples, j. Graphs showing classification performance for the three data sets in terms of MCC against number
of subsamples j for models built using circular fingerprint bond depths ranging from 4-6. A value of j = 201 was chosen to run the classification
models.
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identified in the top two (top-2%) and top three (top-3%)
predictions was calculated to allow comparisons to other
SoM identification methods. When calculating the top-2%
and top-3% values steps were taken to identify atoms in
equivalent sites to ensure that such sites are only included
once in predictions. This was achieved by generating full
circular fingerprints for each atomic site in the same way
as described previously but this time spanning the entire
ligand, with equivalent atomic sites defined as those with
identical circular fingerprints.

CUDA implementation
The three probabilistic classifiers have been implemented
using the Nvidia Nsight [39] integrated development envi-
ronment for CUDA/C++ released as part of CUDA Tools
5.5. A benchmarking analysis has been carried out com-
paring the performance speed of an Nvidia C2075 Tesla
GPU and an Nvidia GT640 GeForce GPU against a refer-
ence CPU implementation running on a single Intel Xeon
E5506 at 2.13GHz.

The source code is available in a public reposi-
tory (https://bitbucket.org/jdt42/probclassifier_cuda) and
could be applied to other classification problems where
the input files are formatted in the appropriate manner for
this tool. The code exploits the parallel nature of GPU’s
by aligning the dimensions of the classification problem,
such as number of feature vectors N and number of sub-
classifiers j, with the parallel architecture of CUDA where
computational work is kernelised and spread over blocks
of threads. The code makes use of atomic operations and
so requires a CUDA enabled GPU with a compute rating
of ≥ 1.1.

Methods
Probabilistic classifiers
Cheminformatics classification approaches that compare
structural similarity to known molecules tend to be more
successful if they allow for some degree of uncertainty
(fuzziness) [40]. This means one treats the attributes rep-
resenting the data items under study, and the class they are
associated with as stochastic variables. In this scenario the
classification problem can be viewed as a hypothesis test-
ing task; this requires estimates of the probability densities
of the attributes for each class. Estimates of these proba-
bility densities, coupled with an appropriate decision rule,
constitute what is commonly referred to as statistical (or
probabilistic) classifiers [40,41].

In the probabilistic pattern recognition framework, it
is assumed that there is an unknown probability distri-
bution p that underlies any relationship in the available
data, D, where the data points belonging to D are drawn
from a product space X × Y where X represents input pat-
terns/objects and Y represents the class space. In this set-
ting, the purpose of a learning algorithm is to discover the

probability distribution p that captures the “functional”
relationships that may exist between X and Y . In a typi-
cal pattern classification scenario the available data set D
is finite and is defined as D = {(xi, yi)}N

i=1, where xi ∈ X;
yi ∈ Y and N refers to the size of the given sample data.

The process of finding an appropriate probabilistic clas-
sification model p(xi, yi) involves relating xi probabilis-
tically to its associated yi, where p(xi, yi) refers to the
probability of (xi, yi) occurring.

In practice, we are often interested in the posterior
probability that a given pattern xi is associated with yi.
The essence of our task is to generate an algorithm that is
capable of inferring probabilistic classification rules from
the given training set with the ability to generalise to new
patterns. The input pattern xi is an L–dimensional math-
ematical vector that inhabits an abstract L–dimensional
space. The pattern vector xi consists of L elements xi =
(xi1, xi2, . . . , xiL) that represent the information we have
about L different but relevant properties of the ith pattern.
The class label yi often denotes a set of predefined classes
{ω0, ω1, . . . , ωM−1}.

In this work we are concerned with classification prob-
lems where the elements xil can assume integer values
being the counts of SYBYL atom types at specific bond
depths from the atom described by xi. For the sake of clar-
ity the index i in both xi and yi will be dropped in the rest
of the paper; unless otherwise stated.

Bayes’ theorem allows us to compute p(x, ωα) (i.e.,
p(x, y)) from a priori and conditional probabilities. This
means that the class posterior probability p(ωα|x) of
a given pattern x being associated with ωα [41] can
expressed in the form [41-44]:

p(ωα|x) = p(x, ωα)

p(x)
= p(ωα)p(x|ωα)

p(x)
(1)

where p(ωα) is the a priori probability of class ωα and can
be estimated from the class proportions in the training
data set; p(x|ωα) is the class conditional probability of x
belonging to class ωα ; and p(x) is given by:

p(x) =
M−1∑
α=0

p(ωα)p(x|ωα) (2)

To make a probabilistic classification on a new pattern
x, the probability of x belonging to each class ωα needs to
be computed, with x assigned to the class with the highest
probability value:

ωα(x) = arg max
α′∈(0,1,...,α,...,M−1)

P(ωα′ |x)

The prediction efficiency of the generated classifier can
be validated by comparing classification predictions made
by the model with actual known classes. Once the model
is deemed reliable, it can then be used to make predictions

https://bitbucket.org/jdt42/probclassifier_cuda
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about the behaviour of real world patterns coming from
the same domain, X, as the given training set.

Clearly the estimation of the probability function
p(x|ωα) is the most important step in the estimation
of p(ωα|x), vide supra. Thus, over the years a number
of approaches to obtain estimates of p(x|ωα) have been
developed [44-46].

When the data are sparse in the descriptor/input space,
it can become difficult to generate a good estimate of
p(x|ωα). This may result in a probabilistic classifier (a sin-
gle classifier) with poor generalisation performance. This
problem is also encountered when one tries to construct
non–probabilistic classifiers on a data set sparse in the
descriptor space.

There are different approaches that can be used to
improve the generalisation performance of single clas-
sifiers. Feature selection schemes [41]; regularisation
methods [42,46]; and the so–called ensemble learning
technique (which is currently popular [42,47,48]) are good
examples of these approaches. In the ensemble technique,
the scheme employed in this work, the classification of a
new pattern x is typically made through majority voting
of the classification predictions of j(> 1) single (or base)
classifiers. Empirical and theoretical results indicate that
an ensemble of base classifiers gives improvements in gen-
eralisation over the individual classifiers [49], providing
the base classifiers are not correlated with one another.
It was suggested that an effective method of achiev-
ing uncorrelated individual classifiers in an ensemble is
by training the single classifiers using randomly selected
q distinct attributes/features of the available L features
where q ≤ L [49] and the q–dimensional descriptor vector
is denoted by xq.

It is important to note that, in this ensemble approach,
the number of training data points remains the same,
i.e., N . Thus, the relative (with respect to q, the descrip-
tor subspace dimension) training sample size increases
[50], which in turn can improve the approximation
of the class–conditioned probability from the training
set.

Three probabilistic classifiers based on the ideas briefly
described in the preceding paragraphs have been used to
create SoM prediction tools, namely the Naive Bayesian
(NB) [41,42], Parzen–Rosenblatt Window (PRW) [51] and
an internally developed methodology called RASCAL.
The latter two approaches are kernel based, vide infra.

In the following sections we describe how p(ωα|xq)
is estimated in each of the classification methods. The
atomic site and its class (SoM or nonSoM) are represented
by xq, and ωα , respectively. Note that in this work M = 2,
i.e. we are only dealing with 2 classes ω0 and ω1, where
ω0 refers to SoM and ω1 denotes nonSoM. Finally it is
assumed that all a priori class distributions are equal, i.e.,
p(ω0) = p(ω1).

Naive Bayesian (NB)
In the Naive Bayesian case, the class conditional p(xq|ωα)

can be estimated as

p(xq|ωα) =
q∏

l=1
p(xq

l |ωα) (3)

where

p(xq
l |ωα) = Cl + 1

Nα + 2
(4)

with Cl being the number of times descriptor xq
l assumes

the same value in class ωα and Nα is the number of
training items belonging to class ωα .

Since p(ω0) = p(ω1), the posterior probability predic-
tion for membership of a particular class is computed as

p(ωα|xq) = p(xq|ωα)∑
α p(xq|ωα)

(5)

The data item xq is predicted to be in the class with
the highest posterior probability p(ωα|xq), and in the case
where equal posterior probabilities are calculated for two
classes they are ranked arbitrarily. The final class member-
ship probabilities are calculated as the ratio of the number
of votes for that class divided by the total number of
subclassifiers j.

Kernel based probabilistic classifiers
In kernel based methods, the average similarity, Si

α , of a
test atom xq

i with the set of atoms xq
k in the training set for

class ωα is calculated by comparing xq
i with all examples

in the training set for ωα as

Si
α = 1

Nα

∑
xq

k∈ωα

K(xq
i , xq

k) (6)

where Nα represents the number of training data items
belonging to class ωα and the kernel function K

(
xq

i , xq
k
)

measures the similarity between xq
i and xq

k . In this case
the class conditional probability p

(
xq

i |ωα

)
is equal to

Si
α , i.e.

p(xq
i |ωα) = 1

Nα

∑
xq

k∈ωα

K
(
xq

i , xq
k
)

(7)

Two different kernel functions have been implemented:
the PRW and a Dirac kernel [52] used in the imple-
mentation of RASCAL, both described in the next
subsections.
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Randomised attribute subsampling classification
algorithm (RASCAL)
In this study we present a probabilistic classifier called
RASCAL that uses a Dirac kernel function as shown
below.

K(xq
i , xq

k) =
{

1 xq
i = xq

k
0 xq

i �= xq
k

(8)

In the case where the descriptors are defined over the
binary domain it has been shown that this kernel is equiv-
alent to a full expansion in Radmacher Walsh polynomials
[53]. However, in this application the circular finger-
prints used to describe the atomic sites are integer valued
although the closed form of the kernel shown above can
be applied to all discrete valued feature vectors.

Parzen-Rosenblatt window (PRW)
In this study, a Gaussian kernel has been used for PRW
defined as

K(xq
i , xq

k) = 1
(h

√
2π)q

exp
(

− (xq
i − xq

k)
T (xq

i − xq
k)

2h2

)

(9)

where (xq
i − xq

k)
T (xq

i − xq
k) is a measure of the distance

between xq
i and xq

k , q is the number of features and h is a

smoothing parameter, where a value of h = 0.1 was found
to give good performance.

Results and discussion
Figure 3 summarises the classification results for four
molecules chosen at random from the CYP 3A4 data set
using the scenario with a bond depth of 4, q = 45, j = 201
and the RASCAL classifier. SoMs have been labelled with
a green circle and the scores for the top three predictions
are labelled against the atom: green text is used where a
SoM is identified, red text is used with a corresponding
red ring where a non-SoM is identified. A SoM is identi-
fied in the top 3 predictions for all molecules, and the top 2
predictions for all except Lovastatin, reflecting the strong
classification performance observed across the entire data
set.

Circular fingerprint depth analysis
The graphs in Figure 4 show classification performance
for the three data sets against the bond depth used to
generate topological circular fingerprints, with the first
row of graphs showing the Matthews Correlation Coeffi-
cient (MCC) and the second row of graphs showing the
top-2%. Classification performance on an MCC basis is
shown in Table 1 and generally improves with circular
fingerprint bond depth since a more detailed description

Lovasta�n Perphenazine

Laquinimod Tamoxifen

0.520.95

0.73

0.45
0.53

0.77

0.68

0.69

1.0

1.0 0.53

0.40

0.92

Figure 3 Example SoM predictions. Graphic to summarise the classification results for four molecules chosen at random from the CYP 3A4 data
set using the scenario with a bond depth of 4, q = 45, j = 201 and the RASCAL classifier. SoMs have been labelled with a green circle and the scores
for the top three predictions are labelled against the atom: green text is used where a SoM is identified, red text is used with a corresponding red
ring where a non-SoM is identified.
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Figure 4 Prediction performance in terms of MCC and top-2%. Graphs showing classification performance in terms of MCC and top-2% (the
percentage of the data sets where a SoM is identified in the top 2 atom positions) for the three data sets against the circular fingerprint bond depth
used to build the models. The number of iterations j = 201.

of each atomic site is being used, although the rate of
improvement tends to slow with bond depth showing
that the more local descriptors are most important. Clas-
sification performance on a top-2% basis shows similar
trends although a plateau in classification performance
tends to be reached earlier at a bond depth of 4-5.

Table 1 Site of metabolism prediction results, MCC
and AUC

Data Bond MCC AUC

set depth PRW RASCAL NB PRW RASCAL NB

2C9

4 0.69 0.64 0.35 0.94 0.95 0.85

5 0.73 0.68 0.36 0.96 0.95 0.87

6 0.73 0.66 0.34 0.97 0.96 0.87

2D6

4 0.66 0.66 0.36 0.95 0.96 0.85

5 0.72 0.69 0.36 0.97 0.96 0.84

6 0.73 0.72 0.38 0.97 0.97 0.84

3A4

4 0.61 0.60 0.31 0.94 0.94 0.80

5 0.64 0.62 0.32 0.95 0.94 0.80

6 0.68 0.65 0.32 0.96 0.94 0.81

Table shows the prediction results in terms of the Matthews Correlation
Coefficient (MCC) and area under the ROC curve.

Table 2 shows the classification performance for circular
fingerprint bond depths of 4-6 and it can be seen that they
encode sufficient information for PRW and RASCAL top-
2% performance of over 82% for all 3 isoforms, results that
are competitive with other published methods [14,15], see
Table 3.

Table 2 Site of metabolism prediction results, top-k%

Data Bond Top-3% Top-2% Top-1%

set depth PRW RASCAL NB PRW RASCAL NB PRW RASCAL NB

2C9

4 92 88 81 83 83 71 71 71 39

5 87 88 81 86 85 70 76 75 43

6 92 90 85 88 88 74 77 76 50

2D6

4 92 94 79 89 88 66 66 77 53

5 93 92 83 90 91 73 73 78 45

6 95 93 78 91 90 69 77 78 46

3A4

4 89 89 64 83 82 51 67 69 26

5 89 85 61 84 82 47 69 69 28

6 89 87 64 85 83 50 72 70 27

Table shows the prediction results in terms of the % of the data sets where a
SoM is identified in the top-k predictions (top-k%).
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Table 3 Comparison to other methods

Data Top-2%

set PRW RASCAL Xenosite RSPredictor SMARTCyp Reactivity & Random

(depth=6) [16] [14,15] [8] docking [10]

2C9 88 88 87 85 86 78 18

2D6 91 90 89 86 84 80 22

3A4 85 83 88 82 80 75 21

Table shows site of metabolism prediction results in terms of the top-2% compared to other methods.

Analysis of subsample length on classification for bond
depths of 4-6
As described previously classification performance is
dependent on the subsample length q and the number of
subclassifiers j. The graphs in Figure 5 show the classifi-
cation performance in terms of MCC against q for each
of the models based on circular fingerprint bond depths
ranging from 4-6. It can be seen that PRW and NB are less
sensitive to q than RASCAL, which is to be expected since
RASCAL is in effect a subsample matching algorithm
and if the subsample becomes too long then no match-
ing instances will be found in the training set for either
class. Therefore when classifying a data set using RASCAL
it is necessary to parametrise carefully to find a suitable
value for q. For PRW and NB classification performance
tends to plateau at high q when applied to these data
sets and using a PRW smoothing parameter of h = 0.1.
For these approaches the extra computational cost of an
ensemble approach is not justified in terms of improved
performance and a standard implementation running over
all L descriptors would be more suitable. It can be seen
that PRW and RASCAL give similar classification perfor-
mance once the parameter q has been optimised, with
both systematically outperforming the NB. This is rein-
forced by the ROC curves shown in Figure 6 where PRW
and RASCAL performance tracks above that for NB.

Significance of molecular similarity
Machine learning becomes more challenging when test
data is more dissimilar to training data. To investigate
the ability of these methods to be applied to molecules
more dissimilar from the training data a test set (TS1)
representing 20% of each isoform data set was selected
at random with the remaining 80% forming the training
set. A second test set (TS2) was then defined as a 50%
subset of TS1 representing the molecules most dissimilar
to the training set, with Open Babel [36] used to mea-
sure molecular similarity using the default fingerprint.
The SoM prediction performance is shown in Table 4 and
shows that a worsening in performance in TS2 is more
pronounced in the CYP 3A4 data set for the RASCAL
classifier and on a top-2% basis in the CYP 2D6 data
set for the PRW classifier indicating that care must be

taken when extrapolating into chemical space more dis-
similar to the training data although reasonable predictive
performance is maintained.

Benchmarking analysis
A comparison of the running times of the PRW, RASCAL
and NB algorithms on the three different platforms is
given in Table 5 and the benefits from running in parallel
are apparent. The results discussed previously have shown
that RASCAL gives classification performance equivalent
to PRW and so to become relevant and competitive as
a classifier it is necessary to demonstrate that RASCAL
is a faster more efficient algorithm. The relevant factors
regarding the computational expense of the RASCAL and
PRW algorithms are discussed next.

The reminder of this section makes use of the follow-
ing variables to describe the computational expense of
the various algorithms: N refers to the size of the train-
ing set for a particular class; j refers to the number of
subsamples; q refers to the subsample size; and L refers
to the full length of the feature vector. Using these defi-
nitions the PRW algorithm computational expense when
subsampling descriptor space, PRWsub, can be estimated
as

O(PRW sub) ≈ N × j × (3 × q + 2)

whereas the computational expense of RASCAL can be
estimated as

O(RASCAL) ≈ N × j × q

It should be noted that the RASCAL estimate is an upper
bound. Only in the case where the training and test sub-
samples are identical are all q features compared other-
wise the feature by feature comparison is halted as soon
a difference is noted. Therefore the 15-fold faster running
time of RASCAL over PRW can be justified by the lower
computational expense, the early termination of the RAS-
CAL kernel where relevant and the simpler nature of the
RASCAL kernel compared to the PRW kernel.

However, as demonstrated in the Results section there
is no benefit to performing subsampling with PRW, hence
a more valid evaluation of algorithm running times is
by comparison against PRW running over all L features
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Figure 5 Impact of subsample length, q. Graphs showing classification performance for the three data sets in terms of MCC against subsample
length q for models built using circular fingerprint bond depths ranging from 4-6. The number of iterations j = 201. RASCAL requires careful
parametrisation of q due to its sensitivity to this parameter.

without subsampling, PRWall, where the computational
expense can be estimated as

O(PRW all) ≈ N × (3 × L + 2)

Therefore RASCAL is more likely to run faster than PRW
when q 	 L. In the data set with bond depth of 6, where
L = 175, applying RASCAL with q = 40 and j = 201
gives a speed increase of 1.5 − 2.0 compared to PRW
running over all features. However, the case for using

RASCAL is likely to become much more compelling when
using data sets consisting of longer feature vectors where
it is more likely that RASCAL models can be used where
q 	 L.

NB runs faster than RASCAL since it is possible to pre-
compute the counts of common features between test data
items and each training class so that the training data
items only need to be parsed once, albeit at the price of
poorer classification performance.
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Figure 6 ROC curves. Graphs showing ROC curves for the three data sets using the best classification models built using circular fingerprint bond
depths ranging from 4-6.

Conclusions
The probabilistic classifiers outlined in this paper based
on 2D topological fingerprints give SoM predictive per-
formance that is competitive with other machine learning
methods that employ complex 3D descriptors, enabling
conceptually simple and efficient classification models to
be built. Data mining approaches often suffer when fin-
gerprints from a test molecule are not contained in the
training data, but descriptor space subsampling and the
use of classifiers that measure a distance between vectors
instead of exact matching help to alleviate this problem.

This enables the creation of classification models that can
be based on relatively small data sets but still applicable
to molecules more distant from the training data where
data mining would be more likely to fail due to the lack
of common fingerprints. Hence the methods could be of
interest to pharmaceutical companies studying a series of
molecules with only of the order of 100’s of data points
available.

RASCAL and PRW were found to give similar predictive
performance with PRW identifying a SoM in the top 2
predictions for 85%, 91% and 88% for the CYP 3A4, 2D6
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Table 4 Impact of molecular similarity on prediction
performance

Data Classifier Bond Top-3% Top-2%

set depth TS1 TS2 TS1 TS2

2C9

PRW
5 85 85 82 85

6 83 85 81 85

RASCAL
5 85 85 78 85

6 81 85 77 85

2D6

PRW
5 90 92 85 75

6 91 94 86 79

RASCAL
5 90 90 84 75

6 87 88 84 83

3A4

PRW
5 83 82 80 78

6 84 81 80 79

RASCAL
5 80 76 76 67

6 79 75 72 63

Table shows the classification performance in terms of top-2% and top-3% for
test set 1 (TS1: 20% of each isoform data set selected at random) and test set 2
(TS2: the 50% of molecules in TS1 most dissimilar to the training data).

and 2C9 data sets respectively, whereas for RASCAL the
figures are 83%, 91% and 88%, respectively. This perfor-
mance is competitive with other published machine learn-
ing methods [14,15] but is achieved using 2D descriptors.
This suggests that there are common patterns in the local
structure of SoMs in the data sets that are captured by

Table 5 Benchmarking analysis

Data Method q Runtime seconds x-fold to Ref

set Ref GT640 C2075 GT640 C2075

2C9

RASCAL 40 42 11 2.2 4 19

NB 40 8.8 1.4 0.3 6 29

PRW 40 436 114 32 4 14

NB 175 8.2 1.3 0.3 6 27

PRW 175 7.0 31 3.6 0.2 2

2D6

RASCAL 40 57 15 3.0 4 19

NB 40 12 1.9 0.4 6 30

PRW 40 727 157 44 5 17

NB 175 11 1.8 0.4 6 28

PRW 175 9.7 43 5.0 0.2 2

3A4

RASCAL 40 298 66 13 5 23

NB 40 55 8.3 1.8 7 31

PRW 40 3,654 714 201 5 18

NB 175 53 8.1 1.8 7 29

PRW 175 45 197 23 0.2 2

Table shows the time taken in seconds and relative performance o the reference
(Ref) to run all three classifiers over the three data sets using a scenario with
bond depth of 6 (175 features) and j = 201 and q = 40. The reference is a single
Intel Xeon E5506 at 2.13GHz. The number of vectors in data sets CYP 2C9, 2D6
and 3A4 are 2905, 3399 and 7294, respectively.

the atomic circular fingerprints and can be identified by
machine learning methods.

RASCAL gives similar classification performance to
PRW but at lower computational expense making it suit-
able for use on large data sets and particularly for the
ensemble schemes outlined in this paper. The speed boost
from using RASCAL is likely to become more apparent for
classification problems where q 	 L (where q is the sub-
sample length and L is the full length of the feature vector)
and in these situations the benefits from using RASCAL
are likely to become more compelling.

The suitability of using CUDA/C++ to exploit the par-
allel capabilities of GPU hardware for classification prob-
lems has been demonstrated and it is hoped that the
source code will be of use to other researchers in the
field. Further enhancements to the implementation could
include maximising the use of faster memory (shared, tex-
ture and constant), implementing task parallelism using
streams and implementing code to run on multiple GPUs,
all of which should further improve the speed-up in per-
formance compared to the reference.

In summary it has been shown that probabilistic clas-
sifiers implemented using randomly selected subclassi-
fiers on an ensemble basis using 2D topological circular
fingerprints as descriptors can give strong SoM predic-
tive performance. However, as with all machine learning
methods, the models are likely to be most relevant within
their domain of applicability and are likely to perform less
well against novel molecules that are very different from
those in the training set.

Additional files

The following additional files have been made available consisting of the
data sets released in the RS-Predictor paper [15] for the three isoforms CYP
3A4, 2D6 and 2C9 but representing atomic sites as topological circular
fingerprints to bond depths ranging from 4-6. The first column is in the
format moleculeNum_atomNum where moleculeNum is the molecule
number per the ordering in the mol2 data sets [15] and atomNum is the
atom number per these data sets. The second column represents the class,
either SOM or notSOM, and the remaining columns represent the
topological circular fingerprint constructed as described in the
Experimental section. The mol2 files representing the ligands in each
isoform data set are also provided in tar files.

Additional file 1: Topological circular fingerprints for atomic sites in
the 3A4 data to a bond depth of 4.

Additional file 2: Topological circular fingerprints for atomic sites in
the 3A4 data to a bond depth of 5.

Additional file 3: Topological circular fingerprints for atomic sites in
the 3A4 data to a bond depth of 6.

Additional file 4: Topological circular fingerprints for atomic sites in
the 2D6 data to a bond depth of 4.

Additional file 5: Topological circular fingerprints for atomic sites in
the 2D6 data to a bond depth of 5.

Additional file 6: Topological circular fingerprints for atomic sites in
the 2D6 data to a bond depth of 6.

http://www.biomedcentral.com/content/supplementary/1758-2946-6-29-S1.zip
http://www.biomedcentral.com/content/supplementary/1758-2946-6-29-S2.zip
http://www.biomedcentral.com/content/supplementary/1758-2946-6-29-S3.zip
http://www.biomedcentral.com/content/supplementary/1758-2946-6-29-S4.zip
http://www.biomedcentral.com/content/supplementary/1758-2946-6-29-S5.zip
http://www.biomedcentral.com/content/supplementary/1758-2946-6-29-S6.zip
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Additional file 7: Topological circular fingerprints for atomic sites in
the 2C9 data to a bond depth of 4.

Additional file 8: Topological circular fingerprints for atomic sites in
the 2C9 data to a bond depth of 5.

Additional file 9: Topological circular fingerprints for atomic sites in
the 2C9 data to a bond depth of 6.

Additional file 10: Ligands in the 3A4 data set in mol2 format.

Additional file 11: Ligands in the 2D6 data set in mol2 format.

Additional file 12: Ligands in the 2C9 data set in mol2 format.
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