
The enhanced suffix array and its

applications to genome analysis

Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch

Faculty of Technology, University of Bielefeld, P.O. Box 10 01 31, 33501 Bielefeld,
Germany. Email: {mibrahim,enno,kurtz}@TechFak.Uni-Bielefeld.DE

Proceedings of the Second Workshop on Algorithms in Bioinformatics,

Springer-Verlag, Lecture Notes in Computer Science, 2002

Abstract. In large scale applications as computational genome analysis,
the space requirement of the suffix tree is a severe drawback. In this
paper, we present a uniform framework that enables us to systematically
replace every string processing algorithm that is based on a bottom-
up traversal of a suffix tree by a corresponding algorithm based on an
enhanced suffix array (a suffix array enhanced with the lcp-table). In
this framework, we will show how maximal, supermaximal, and tandem
repeats, as well as maximal unique matches can be efficiently computed.
Because enhanced suffix arrays require much less space than suffix trees,
very large genomes can now be indexed and analyzed, a task which was
not feasible before. Experimental results demonstrate that our programs
require not only less space but also much less time than other programs
developed for the same tasks.

1 Introduction

Repeat analysis plays a key role in the study, analysis, and comparison of com-
plete genomes. In the analysis of a single genome, a basic task is to characterize
and locate the repetitive elements of the genome.

The repetitive elements can be generally classified into two large groups:
dispersed repetitive DNA and tandemly repeated DNA. Dispersed repetitions
vary in size and content and fall into two basic categories: transposable elements
and segmental duplications [14]. Transposable elements belong to one of the fol-
lowing four classes: SINEs (short interspersed nuclear elements), LINEs (long
interspersed nuclear elements), LTR (long terminal repeats), and transposons.
Segmental duplications, which might contain complete genes, have been divided
into two classes: chromosome-specific and trans-chromosome duplications [17].
Tandemly repeated DNA can also be classified into two categories: simple se-
quence repetitions (relatively short k-mers such as micro- and minisatellites) and
larger ones, which are called blocks of tandemly repeated segments.

The repeat contents of a genome can be very large. For example, 50% of
the 3 billion bp of the human genome consist of repeats. Repeats also comprise
11% of the mustard weed genome, 7% of the worm genome and 3% of the fly
genome [14]. Clearly, one needs extensive algorithmic support for a systematic
study of repetitive DNA on a genomic scale. The software tool REPuter has

originally been developed for this task [13]. The core algorithm of REPuter
locates maximal exact repeats of a sequence in linear space and time. Although
it is based on an efficient and compact implementation of suffix trees [12], the
space consumption is still quite large: it requires 12.5 bytes per input character
in practice. Moreover, in large scale applications, the suffix tree suffers from a
poor locality of memory reference, which causes a significant loss of efficiency on
cached processor architectures.

The same problem has been identified in the context of genome comparison.
Nowadays, the DNA sequences of entire genomes are being determined at a rapid
rate. For example, the genomes of several strains of E. coli and S. aureus have
already been completely sequenced. When the genomic DNA sequences of closely
related organisms become available, one of the first questions researchers ask is
how the genomes align. This alignment may help, for example, in understanding
why a strain of a bacterium is pathogenic or resistant to antibiotics while another
is not. The software tool MUMmer [5] has been developed to efficiently align two
sufficiently similar genomic DNA sequences. In the first phase of its underlying
algorithm, a maximal unique match (MUM) decomposition of two genomes S1

and S2 is computed. A MUM is a sequence that occurs exactly once in genome
S1 and once in genome S2, and is not contained in any longer such sequence. (We
will show in this paper that MUM s are special supermaximal repeats.) Using
the suffix tree of S1#S2, MUM s can be computed in O(n) time and space, where
n = |S1#S2| and # is a symbol neither occurring in S1 nor in S2. However, the
space consumption of the suffix tree is a major problem when comparing large
genomes; see [5].

To sum up, although the suffix tree is undoubtedly one of the most important
data structures in sequence analysis [2, 7], its space consumption is the bottleneck
in genome analysis tasks, whenever the sequences under consideration are large
genomes.

More space efficient data structures than the suffix tree exist. The most
prominent one is the suffix array [16] which requires only 4n bytes (4 bytes per
input character) in its basic form. In most practical applications, it can be stored
in secondary memory because no random access to it is necessary. The direct
construction of the suffix array takes O(n · log n) time in the worst case, but
in practice it can be constructed as fast as a suffix tree [15]. Furthermore, it is
known that pattern matching based on suffix arrays can compete with pattern
matching based on suffix trees; see [1, 16] for details. However, efficient algorithms
on suffix arrays that solve typical string processing problems like searching for
all repeats in a string have not yet been devised.

In this paper, we present a uniform framework that enables us to systemati-
cally replace a string processing algorithm that is based on a bottom-up traversal
of a suffix tree by a corresponding algorithm that is based on an enhanced suffix
array (a suffix array enhanced with the lcp-table).1 This approach has several
advantages:

1 It is also possible to replace every string processing algorithm based on a top-down
traversal of a suffix tree by an algorithm on an enhanced suffix array; see [1].

2

1. The algorithms are more space efficient than the corresponding ones based
on the suffix tree because our implementation of the enhanced suffix array
requires only 5n bytes.

2. Experiments show that the running times of the algorithms are much better
than those based on the suffix tree.

3. The algorithms are easier to implement on enhanced suffix arrays than on
suffix trees.

First, we introduce the unified framework: the lcp-interval tree of a suffix ar-
ray. Based on this framework, we then concentrate on algorithms that efficiently
compute various kinds of repeats. To be precise, we will show how to efficiently
compute maximal, supermaximal, and tandem repeats of a string S using a
bottom-up traversal of the lcp-interval tree of S. We stress that this tree is only
conceptual, in the sense that it is not really built during the bottom-up traver-
sal (i.e., at any stage, only a representation of a small part of the lcp-interval
tree resides in main memory). We implemented the algorithms and applied them
to several genomes. Experiments show that our programs require less time and
space than other programs for the same task. We would like to point out that
our framework is not confined to the above-mentioned applications. For exam-
ple, the off-line computation of the Lempel-Ziv decomposition of a string (which
is important in data compression) can also be efficiently implemented using this
framework.

2 Basic notions

Let S be a string of length |S| = n over an ordered alphabet Σ. To simplify
analysis, we suppose that the size of the alphabet is a constant, and that n < 232.
The latter implies that an integer in the range [0, n] can be stored in 4 bytes.
We assume that the special symbol $ is an element of Σ (which is larger then all
other elements) but does not occur in S. S[i] denotes the character at position
i in S, for 0 ≤ i < n. For i ≤ j, S[i..j] denotes the substring of S starting
with the character at position i and ending with the character at position j. The
substring S[i..j] is also denoted by the pair of positions (i, j).

A pair of substrings R = ((i1, j1), (i2, j2)) is a repeated pair if and only if
(i1, j1) 6= (i2, j2) and S[i1..j1] = S[i2..j2]. The length of R is j1−i1+1. A repeated
pair ((i1, j1), (i2, j2)) is called left maximal if S[i1 − 1] 6= S[i2 − 1]2 and right
maximal if S[j1+1] 6= S[j2+1]. A repeated pair is called maximal if it is left and
right maximal. A substring ω of S is a (maximal) repeat if there is a (maximal)
repeated pair ((i1, j1), (i2, j2)) such that ω = S[i1..j1]. A supermaximal repeat is
a maximal repeat that never occurs as a substring of any other maximal repeat.
A string is a tandem repeat if it can be written as ωω for some nonempty string
ω. An occurrence of a tandem repeat ωω = S[p..p+ |2ω|−1] is represented by the
pair (|ω|, p). Such an occurrence (|ω|, p) is branching if S[p + |ω|] 6= S[p + 2|ω|].

2 This definition has to be extended to the cases i1 = 0 or i2 = 0, but throughout the
paper we do not explicitly state boundary cases like these.

3

i suftab lcptab bwtab suftab−1 Ssuftab[i]

0 2 0 c 2 aaacatat$

1 3 2 a 6 aacatat$

2 0 1 0 acaaacatat$

3 4 3 a 1 acatat$

4 6 1 c 3 atat$

5 8 2 t 7 at$

6 1 0 a 4 caaacatat$

7 5 2 a 8 catat$

8 7 0 a 5 tat$

9 9 1 a 9 t$

10 10 0 t 10 $

[0..10]0-

[6..7] [8..9][0..5]

[4..5][2..3] 2-3-

1-2-1-

[0..1]2-

Fig. 1. Enhanced suffix array of the string S = acaaacatat$ and its lcp-interval tree.
Table suftab−1 is introduced in Section 6.2.

The suffix array suftab is an array of integers in the range 0 to n, specify-
ing the lexicographic ordering of the n + 1 suffixes of the string S$. That is,
Ssuftab[0], Ssuftab[1], . . . , Ssuftab[n] is the sequence of suffixes of S$ in ascending lex-
icographic order, where Si = S[i..n− 1]$ denotes the ith nonempty suffix of the
string S$, 0 ≤ i ≤ n. The suffix array requires 4n bytes. The direct construction
of the suffix array takes O(n · log n) time [16], but it can be build in O(n) time
via the construction of the suffix tree; see, e.g., [7].

bwtab is a table of size n + 1 such that for every i, 0 ≤ i ≤ n, bwtab[i] =
S[suftab[i] − 1] if suftab[i] 6= 0. bwtab[i] is undefined if suftab[i] = 0. bwtab is
the Burrows and Wheeler transformation [4] known from data compression. It
is stored in n bytes and constructed in one scan over suftab in O(n) time.

The lcp-table lcptab is an array of integers in the range 0 to n. We define
lcptab[0] = 0 and lcptab[i] is the length of the longest common prefix of Ssuftab[i−1]

and Ssuftab[i], for 1 ≤ i ≤ n. Since Ssuftab[n] = $, we always have lcptab[n] = 0; see
Fig. 1. The lcp-table can be computed as a by-product during the construction
of the suffix array, or alternatively, in linear time from the suffix array [9]. The
lcp-table requires 4n bytes in the worst case. However, in practice it can be
implemented in little more than n bytes. More precisely, we store most of the
values of table lcptab in a table lcptab1 using n bytes. That is, for any i ∈ [1, n],
lcptab1[i] = max{255, lcptab[i]}. There are usually only few entries in lcptab that
are larger than or equal to ≥ 255; see Section 7. To access these efficiently, we
store them in an extra table llvtab. This contains all pairs (i, lcptab[i]) such that
lcptab[i] ≥ 255, ordered by the first component. At index i of table lcptab1 we
store 255 whenever lcptab[i] ≥ 255. This tells us that the correct value of lcptab

is found in llvtab. If we scan the values in lcptab1 in consecutive order and find
a value 255, then we access the correct value in lcptab in the next entry of table
llvtab. If we access the values in lcptab1 in arbitrary order and find a value 255
at index i, then we perform a binary search in llvtab using i as the key. This
delivers lcptab[i] in O(log2 |llvtab|) time.

4

3 The lcp-interval tree of a suffix array

Definition 1. Interval [i..j], 0 ≤ i < j ≤ n, is an lcp-interval of lcp-value ` if

1. lcptab[i] < `,
2. lcptab[k] ≥ ` for all k with i + 1 ≤ k ≤ j,
3. lcptab[k] = ` for at least one k with i + 1 ≤ k ≤ j,
4. lcptab[j + 1] < `.

We will also use the shorthand `-interval (or even `-[i..j]) for an lcp-interval [i..j]
of lcp-value `. Every index k, i + 1 ≤ k ≤ j, with lcptab[k] = ` is called `-index.
The set of all `-indices of an `-interval [i..j] will be denoted by `Indices(i, j). If
[i..j] is an `-interval such that ω = S[suftab[i]..suftab[i] + ` − 1] is the longest
common prefix of the suffixes Ssuftab[i], Ssuftab[i+1], . . . , Ssuftab[j], then [i..j] is also
called ω-interval.

As an example, consider the table in Fig. 1. [0..5] is a 1-interval because lcptab[0] =
0 < 1, lcptab[5 + 1] = 0 < 1, lcptab[k] ≥ 1 for all k with 1 ≤ k ≤ 5, and
lcptab[2] = 1. Furthermore, `Indices(0, 5) = {2, 4}.

Kasai et al. [9] presented a linear time algorithm to simulate the bottom-up
traversal of a suffix tree with a suffix array combined with the lcp-information.
The following algorithm is a slight modification of their algorithm TraverseWith-
Array. It computes all lcp-intervals of the lcp-table with the help of a stack. The
elements on the stack are lcp-intervals represented by tuples 〈lcp, lb, rb〉, where
lcp is the lcp-value of the interval, lb is its left boundary, and rb is its right
boundary. In Algorithm 2, push (pushes an element onto the stack) and pop

(pops an element from the stack and returns that element) are the usual stack
operations, while top provides a pointer to the topmost element of the stack.

Algorithm 2 Computation of lcp-intervals (adapted from Kasai et al. [9]).

push(〈0, 0,⊥〉)
for i := 1 to n do

lb := i − 1
while lcptab[i] < top.lcp

top.rb := i − 1
interval := pop

report(interval)
lb := interval.lb

if lcptab[i] > top.lcp then
push(〈lcptab[i], lb,⊥〉)

Here, we will take the approach of Kasai et al. [9] one step further and
introduce the concept of an lcp-interval tree.

Definition 3. An m-interval [l..r] is said to be embedded in an `-interval [i..j]
if it is a subinterval of [i..j] (i.e., i ≤ l < r ≤ j) and m > `.3 The `-interval

3 Note that we cannot have both i = l and r = j because m > `.

5

[i..j] is then called the interval enclosing [l..r]. If [i..j] encloses [l..r] and there is
no interval embedded in [i..j] that also encloses [l..r], then [l..r] is called a child
interval of [i..j].

This parent-child relationship constitutes a conceptual (or virtual) tree which
we call the lcp-interval tree of the suffix array. The root of this tree is the 0-
interval [0..n]; see Fig. 1. The lcp-interval tree is basically the suffix tree without
leaves (note, however, that it is not our intention to build this tree). These
leaves are left implicit in our framework, but every leaf in the suffix tree, which
corresponds to the suffix Ssuftab[l], can be represented by a singleton interval [l..l].
The parent interval of such a singleton interval is the smallest lcp-interval [i..j]
with l ∈ [i..j]. For instance, continuing the example of Fig. 1, the child intervals
of [0..5] are [0..1], [2..3], and [4..5]. The next theorem shows how the parent-child
relationship of the lcp-intervals can be determined from the stack operations in
Algorithm 2.

Theorem 4. Consider the for-loop of Algorithm 2 for some index i. Let top be
the topmost interval on the stack and (top − 1) be the interval next to it (note
that (top − 1).lcp < top.lcp).

1. If lcptab[i] ≤ (top − 1).lcp, then top is the child interval of (top − 1).
2. If (top − 1).lcp < lcptab[i] < top.lcp, then top is the child interval of those

lcptab[i]-interval which contains i.

An important consequence of Theorem 4 is the correctness of Algorithm 5.
There, the elements on the stack are lcp-intervals represented by quadruples
〈lcp, lb, rb, childList〉, where lcp is the lcp-value of the interval, lb is its left
boundary, rb is its right boundary, and childList is a list of its child intervals.
Furthermore, add([c1, . . . , ck], c) appends the element c to the list [c1, . . . , ck].

Algorithm 5 Traverse and process the lcp-interval tree

lastInterval := ⊥
push(〈0, 0,⊥, []〉)
for i := 1 to n do

lb := i − 1
while lcptab[i] < top.lcp

top.rb := i − 1
lastInterval := pop

process(lastInterval)
lb := lastInterval.lb

if lcptab[i] ≤ top.lcp then
top.childList := add(top.childList, lastInterval)
lastInterval := ⊥

if lcptab[i] > top.lcp then
if lastInterval 6= ⊥ then

push(〈lcptab[i], lb,⊥, [lastInterval]〉)
lastInterval := ⊥

else push(〈lcptab[i], lb,⊥, []〉)

6

In Algorithm 5, the lcp-interval tree is traversed in a bottom-up fashion by a
linear scan of the lcptab, while needed information is stored on a stack. We
stress that the lcp-interval tree is not really build: whenever an `-interval is
processed by the generic function process, only its child intervals have to be
known. These are determined solely from the lcp-information, i.e., there are
no explicit parent-child pointers in our framework. In contrast to Algorithm 2,
Algorithm 5 computes all lcp-intervals of the lcp-table with the child information.
In the rest of the paper, we will show how to solve several problems merely by
specifying the function process called on line 8 of Algorithm 5.

4 An efficient implementation of an optimal algorithm

for finding maximal repeated pairs

The algorithm of Gusfield [7, page 147] computes maximal repeated pairs in
a sequence S. It runs in O(kn + z) time where k = |Σ| and z is the number
of maximal repeated pairs. This running time is optimal. To the best of our
knowledge, Gusfield’s algorithm was first implemented in the REPuter -program
[13], based on space efficient suffix trees as described in [12]. In this section,
we show how to implement the algorithm using enhanced suffix arrays. This
considerably reduces the space requirements, thus removing a bottle neck in the
algorithm. As a consequence, much larger genomes can be searched for repetitive
elements. The implementation requires tables suftab, lcptab, bwtab, but does not
access the input sequence. The accesses to the three tables are in sequential
order, thus leading to an improved cache coherence and in turn considerably
reduced running time. This is verified in Section 7.

We begin by introducing some notation: Let ⊥ stand for the undefined char-
acter. We assume that it is different from all characters in Σ. Let [i..j] be an
`-interval and u = S[suftab[i]..suftab[i] + ` − 1]. Define P[i..j] to be the set of
positions p such that u is a prefix of Sp, i.e., P[i..j] = {suftab[r] | i ≤ r ≤ j}. We
divide P[i..j] into disjoint and possibly empty sets according to the characters to
the left of each position: For any a ∈ Σ ∪ {⊥} define

P[i..j](a) =

{

{0 | 0 ∈ P[i..j]} if a = ⊥
{p ∈ P[i..j] | p > 0 and S[p − 1] = a} otherwise

The algorithm computes position sets in a bottom-up strategy. In terms of
an lcp-interval tree, this means that the lcp-interval [i..j] is processed only after
all child intervals of [i..j] have been processed.

Suppose [i..j] is a singleton interval, i.e., i = j. Let p = suftab[i]. Then
P[i..j] = {p} and

P[i..j](a) =

{

{p} if p > 0 and S[p − 1] = a or p = 0 and a = ⊥
∅ otherwise

Now suppose that i < j. For each a ∈ Σ ∪{⊥}, P[i..j](a) is computed step by
step while processing the child intervals of [i..j]. These are processed from left

7

to right. Suppose that they are numbered, and that we have already processed
q child intervals of [i..j]. By Pq

[i..j](a) we denote the subset of P[i..j](a) obtained

after processing the qth child interval of [i..j]. Let [i′..j′] be the (q + 1)th child
interval of [i..j]. Due to the bottom-up strategy, [i′..j′] has been processed and
hence the position sets P[i′..j′](b) are available for any b ∈ Σ ∪ {⊥}.

[i′..j′] is processed in the following way: First, maximal repeated pairs are
output by combining the position set Pq

[i..j](a), a ∈ Σ ∪ {⊥}, with position sets

P[i′..j′](b), b ∈ Σ ∪ {⊥}. In particular, ((p, p + ` − 1), (p′, p′ + `− 1)), p < p′, are
output for all p ∈ Pq

[i..j](a) and p′ ∈ P[i′..j′](b), a, b ∈ Σ ∪ {⊥} and a 6= b.

It is clear that u occurs at position p and p′. Hence ((p, p+`−1), (p′, p′+`−1))
is a maximal repeated pair. By construction, only those positions p and p′ are
combined for which the characters immediately to the left, i.e., at positions p−1
and p′ − 1 (if they exist), are different. This guarantees left-maximality of the
output repeated pairs.

The position sets Pq

[i..j](a) were inherited from child intervals of [i..j] that

are different from [i′..j′]. Hence the characters immediately to the right of u at
positions p + ` and p′ + ` (if these exist) are different. As a consequence, the
output repeated pairs are maximal.

Once the maximal repeated pairs for the current child interval [i′..j′] are
output, we compute the union Pq+1

[i..j](e) := Pq

[i..j](e)∪P[i′ ..j′](e) for all e ∈ Σ∪{⊥}.

That is, the position sets are inherited from [i′..j′] to [i..j].
In Algorithm 5 if the function process is applied to an lcp-interval, then all

its child intervals are available. Hence the maximal repeated pair algorithm can
be implemented by a bottom-up traversal of the lcp-interval tree. To this end,
the function process in Algorithm 5 outputs maximal repeated pairs and further
maintains position sets on the stack (which are added as a fifth component to
the quadruples). The bottom-up traversal requires O(n) time.

Algorithm 5 accesses the lcp-table in sequential order. Additionally, the max-
imal repeated pair algorithm does so with table suftab. Now consider the ac-
cesses to the input string S: Whenever suftab[i] is processed, the input char-
acter S[suftab[i] − 1] is accessed. Since bwtab[i] = S[suftab[i] − 1], whenever
suftab[i] > 0, the access to S can be replaced by an access to bwtab. Since suftab

is accessed in sequential order, this also holds for bwtab. In other words, we
do not need the input string when computing maximal repeated pairs. Instead
we use table bwtab without increasing the total space requirement. The same
technique is applied when computing supermaximal repeats; see Section 5.

There are two operations performed when processing an lcp-interval [i..j].
Output of maximal repeated pairs by combining position sets and union of po-
sition sets. Each combination of position sets means to compute their Cartesian
product. This delivers a list of position pairs, i.e., maximal repeated pairs. Each
repeated pair is computed in constant time from the position lists. Altogether,
the combinations can be computed in O(z) time, where z is the number of re-
peats. The union operation for the position sets can be implemented in constant
time, if we use linked lists. For each lcp-interval, we have O(k) union operations,
where k = |Σ|. Since O(n) lcp-intervals have to be processed, the union and

8

add operations require O(kn) time. Altogether, the algorithm runs in O(kn+ z)
time.

Next, we analyze the space consumption of the algorithm. A position set
P[i..j](a) is the union of position sets of the child intervals of [i..j]. If the child in-
tervals of [i..j] have been processed, the corresponding position sets are obsolete.
Hence it is not required to copy position sets. Moreover, we only have to store
the position sets for those lcp-intervals which are on the stack, which is used for
the bottom-up traversal of the lcp-interval tree. So it is natural to store refer-
ences to the position sets on the stack together with other information about the
lcp-interval. Thus the space required for the position sets is determined by the
maximal size of the stack. Since this is O(n), the space requirement is O(|Σ|n).
In practice, however, the stack size is much smaller. Altogether the algorithm is
optimal, since its space and time requirement is linear in the size of the input
plus the output.

5 A new algorithm for finding supermaximal repeats

An `-interval [i..j] is called a local maximum in the lcp-table if lcptab[k] = ` for
all i+1 ≤ k ≤ j. It is not difficult to see that there is a one-to-one correspondence
between the local maxima in the lcp-table and the leaves of the lcp-interval tree.

Lemma 6. A string ω is a supermaximal repeat if and only if there is an `-
interval [i..j] such that

– [i..j] is a local maximum in the lcp-table and [i..j] is the ω-interval.
– the characters bwtab[i], bwtab[i + 1], . . . , bwtab[j] are pairwise distinct.

The preceding lemma does not only imply that the number of supermax-
imal repeats is smaller than n, but it also suggests a simple linear time al-
gorithm to compute all supermaximal repeats of a string S: Find all local
maxima in the lcp-table of S. For every local maximum [i..j] check whether
bwtab[i], bwtab[i + 1], . . . , bwtab[j] are pairwise distinct characters. If so, report
S[suftab[i]..suftab[i] + lcptab[i] − 1] as supermaximal repeat. The reader is in-
vited to compare our simple algorithm with the one described in [7, page 146].
An experimental comparison of the two algorithms can be found in Section 7.

As an application of Lemma 6, we will show how to efficiently compute maxi-
mal unique matches. This is an important subtask in the software tool MUMmer
[5], which aligns DNA sequences of whole genomes, and in the identification of
X-patterns, which appear in the comparison of two bacterial genomes [6].

Definition 7. Given two sequences S1 and S2, a MUM is a sequence that occurs
exactly once in S1 and once in S2, and is not contained in any longer such
sequence.

Lemma 8. Let # be a unique separator symbol not occurring in S1 and S2 and
let S = S1#S2. u is a MUM of S1 and S2 if and only if u is a supermaximal
repeat in S such that

9

1. there is only one maximal repeated pair ((i1, j1), (i2, j2)) with u = S[i1..j1] =
S[i2..j2],

2. j1 < p < i2, where p = |S1|.

In MUMmer , MUM s are computed in O(|S|) time and space with the help
of the suffix tree of S = S1#S2. Using an enhanced suffix array, this task can
be done more time and space economically as follows: Find all local maxima
in the lcp-table of S = S1#S2. For every local maximum [i..j] check whether
i+1 = j and bwtab[i] 6= bwtab[j]. If so, report S[suftab[i]..suftab[i]+ lcptab[i]−1]
as MUM . In Section 7, we also compare the performance of MUMmer with the
implementation of the preceding algorithms.

6 Efficient detection of branching tandem repeats

This section is devoted to the computation of tandem repeats via enhanced suffix
arrays. Stoye and Gusfield [18] described how all tandem repeats can be derived
from branching tandem repeats by successive left-rotations. For this reason, we
restrict ourselves to the computation of all branching tandem repeats.

6.1 A brute force method

The simplest method to find branching tandem repeats is to process all lcp-
intervals. For a given ω-interval [i..j] one checks whether there is a child interval
[l..r] (which may be a singleton interval) of [i..j] such that ωω is a prefix of
Ssuftab[q] for each q ∈ [l..r]. Such a child interval can be detected in O(|ω| log(j−i))
time (if it exists), using the algorithm of [16] that searches for ω in [i..j]. It
turns out that the running time of this algorithm is O(n2) (take, e.g., S = an).
However, in practice this method is faster and more space efficient than other
methods; see Section 7.

6.2 The optimized basic algorithm

The optimized basic algorithm of [18] computes all branching tandem repeats
in O(n log n) time. It is based on a traversal of the suffix tree, in which each
branching node α is annotated by its leaf list, i.e., by the set of leaves in the
subtree below α. The leaf list of a branching node α corresponds to an lcp-interval
in the lcp-interval tree. As a consequence, it is straightforward to implement the
optimized basic algorithm via a traversal of the lcp-interval tree.

Algorithm 9 For each `-interval [i..j] determine the child interval [imax..jmax]
of maximal width among all child intervals of [i..j]. Then, for each q such that
i ≤ q ≤ imax − 1 or jmax + 1 ≤ q ≤ j, let p = suftab[q] and verify the following:

(1) p + 2` = n or S[p + `] 6= S[p + 2`] (character-check)
(2) p + ` = suftab[h] for some h, i ≤ h ≤ j (forward-check)
(3) p − ` = suftab[h] for some h, i ≤ h ≤ j (backward-check)

10

If (1) and either (2) or (3) is satisfied, then output (`, p).

Algorithm 9 computes all branching tandem repeats. To analyze the effi-
ciency, we determine the number of character-, backward-, and forward-checks.
Since the largest child interval is always excluded, Algorithm 9 only performs
verification steps for O(n log n) suffixes; see [18]. A character-check can easily be
performed in constant time. For the forward- and backward-check the inverse
suffix table suftab−1 is used. This is a table of size n + 1, such that for any
q, 0 ≤ q ≤ n, suftab−1[suftab[q]] = q. Obviously, p + ` = suftab[h], for some
h, i ≤ h ≤ j, if and only if i ≤ suftab−1[p + `] ≤ j. Similarly, p − ` = suftab[h]
for some h, i ≤ h ≤ j, if and only if i ≤ suftab

−1[p − `] ≤ j. Hence, every
forward-check and backward-check requires constant time. The lcp-interval tree
is processed in O(n) time. For each interval, a child interval of maximal width can
be determined in constant extra time. Therefore, Algorithm 9 runs in O(n log n)
time. Processing the lcp-interval tree requires tables lcptab and suftab plus some
space for the stack used during the bottom-up traversal. To perform the forward-
and backward-checks in constant time, one also needs table suftab−1, which re-
quires 4n bytes. Hence our implementation of the optimized basic algorithm
requires 9n bytes.

6.3 The improved O(n log n)-algorithm

We improve Algorithm 9 by getting rid of the character-checks and reducing the
number of forward- and backward checks. That is, we exploit the fact that for an
occurrence (|ω|, p) of a branching tandem repeat ωω, we have S[p] = S[p + |ω|].
As a consequence, if p+ |ω| = suftab[q] for some q in the ω-interval [i..j], p must
occur in the child interval [la..ra] storing the suffixes of S that have ωa as a
prefix, where a = S[suftab[i]] = S[p]. This is formally stated in the following
lemma.

Lemma 10. The following statements are equivalent:

(1) (|ω|, p) is an occurrence of a branching tandem repeat ωω.
(2) p + |ω| = suftab[q] for some q in the ω-interval [i..j], and p = suftab[qa] for

some qa in the child interval [ia..ja] representing the suffixes of S that have
ωa as a prefix, where a = S[p].

This lemma suggests the following algorithm:

Algorithm 11 For each `-interval [i..j], let a = S[suftab[i]] and determine the
child interval [ia..ja] of [i..j] such that a = S[suftab[ia] + `]. Proceed according
to the following cases:

(1) If ja − ia + 1 ≤ i − j + 1 − (ja − ia + 1), then for each q, ia ≤ q ≤ ja, let
p = suftab[q]. If p+` = suftab[r] for some r, i ≤ r ≤ ia−1 or ja +1 ≤ r ≤ j,
then output (`, p).

11

(2) If ja − ia + 1 > i − j + 1 − (ja − ia + 1), then for each q, i ≤ q ≤ ia − 1 or
ja + 1 ≤ q ≤ j, let p = suftab[q]. If p− ` = suftab[r] for some r, ia ≤ r ≤ ja,
then output (`, p).

One easily verifies for each interval [l..r] that l − r + 1− (rmax − lmax + 1) ≥
min{ra − l + 1, l − r + 1 − (ra − la + 1)}. Hence Algorithm 11 checks not more
suffixes than Algorithm 9. Thus the number of suffixes checked is O(n log n).
For each suffix either a forward-check or backward-check is necessary. This takes
constant time. The lcp-interval tree is processed in O(n) time. Additionally,
for each interval the algorithm determines the child interval [la..ra]. This takes
constant extra time. Hence the running time of Algorithm 11 is O(n log n).

7 Experiments

7.1 Programs and data

In our experiments we applied the following programs:

– REPuter and esarep implement the algorithm of Gusfield (see Section 4) to
compute maximal repeated pairs. While REPuter is based on suffix trees,
esarep uses enhanced suffix arrays, as described in Section 4.

– supermax computes supermaximal repeats. It implements the algorithm de-
scribed in Section 5.

– unique-match and esamum compute MUM s. unique-match is part of the
original distribution of MUMmer (version 1.0) [5]. It is based on suffix trees.
esamum is based on enhanced suffix arrays and uses the algorithm described
at the end of Section 5.

– BFA, OBA, and iOBA compute branching tandem repeats. BFA implements
the brute force algorithm described in Section 6. It uses the binary search
algorithm of [16] to check for the appropriate child interval. OBA is an
implementation of the optimized basic algorithm, and iOBA incorporates
the improvements described in Section 6.

We applied the six programs for the detection of repeats to the genome of E. coli
(4,639,221 bp) and the genome of yeast (12,156,300 bp). Additionally, we applied
unique-match and esamum to the following pairs of genomes:

Mycoplasma 2: The complete genomes of Mycoplasma pneumoniae (816,394
bp) and of Mycoplasma genitalium (580,074 bp).

Streptococcus 2: The complete genomes of two strains of Streptococcus pneu-
moniae (2,160,837 bp and 2,038,615 bp).

E. coli 2: The complete genomes of two strains of E. coli (4,639,221 bp and
5,528,445 bp).

For E. coli and yeast and for all pairs of genomes we constructed the corre-
sponding enhanced suffix array (tables suftab, lcptab, bwtab, suftab−1) once and
stored each table on a separate file. The construction was done by a program

12

that is based on the suffix sorting algorithm of [3]. REPuter and unique-match
construct the suffix tree in main memory (using O(n) time) before they search
for maximal repeated pairs and MUM s, respectively. All other programs use
memory mapping to access the enhanced suffix array from the different files. Of
course, a file is mapped into main memory only if the table it stores is required
for the particular algorithm.

Our method to construct the enhanced suffix array uses about 30% of the
space required by REPuter , and 15% of the space required by unique-match.
The construction time is about the same as the time to construct the suffix tree
in REPuter and in unique-match.

7.2 Main experimental results

The results of applying the different programs to the different data sets are shown
in Tables 1–3. The running times reported are for an Intel Pentium III computer
with a 933 MHz CPU and 500 MB RAM running Linux. For a fair comparison,
we report the running time of REPuter and of unique-match without suffix tree
construction.

The running time of supermax is almost independent of the minimal length
of the supermaximal repeats computed. Since the algorithm is so simple, the
main part of the running time is the input and output. The strmat-package
of [10] implements a more complicated algorithm than ours for the same task.
For example, when applied to E. coli , it requires 19 sec. (without suffix tree
construction) to compute all 944,546 supermaximal repeats of length at least 2.
For this task supermax requires 1.3 sec due to the large size of the output.

The comparison of esarep and REPuter underline the advantages of the
enhanced suffix array over the suffix tree. esarep used about halve of the space
of REPuter and it is 5 to 10 times faster. The performance gain is due to the
improved cache behavior achieved by the linear scanning of the tables suftab,
lcptab, and bwtab.

E. coli (n = 4,639,221)

` maximal repeated pairs supermax

#reps REPuter esarep #reps

18 11884 9.68 0.83 1676 0.15

20 7800 9.65 0.77 890 0.15

23 5207 9.68 0.74 635 0.14

27 3570 9.66 0.72 493 0.14

30 2731 9.66 0.71 449 0.14

40 841 9.67 0.69 280 0.14

50 608 9.66 0.68 195 0.14

yeast (n = 12,156,300)

maximal repeated pairs supermax

#reps REPuter esarep #reps

306931 27.81 5.85 12939 0.42

175456 27.70 4.07 6372 0.41

84116 27.62 2.91 4041 0.40

41401 27.62 2.39 2804 0.40

32200 27.64 2.27 2367 0.40

20768 27.69 2.12 1669 0.40

16210 27.64 2.05 1349 0.40

Table 1. Running times (in sec.) for computing maximal repeated pairs and super-
maximal repeats. The column titled #reps gives the number of repeats of length ≥ `.

13

E. coli (n = 4,639,221)

` #reps BFA OBA iOBA

2 298853 1.32 7.83 1.60

5 5996 1.32 4.73 1.47

8 136 1.30 2.87 1.38

11 20 0.84 1.20 1.13

14 17 0.38 0.46 0.52

yeast (n = 12,156,300)

#reps BFA OBA iOBA

932971 3.59 22.77 4.38

32034 3.56 14.80 4.07

4107 3.54 8.72 3.87

1326 2.83 4.74 3.47

576 1.20 1.59 1.64

Table 2. Running times (in sec.) for computing branching tandem repeats. The column
titled #reps gives the number of branching tandem repeats of length ≥ `.

unique-match esamum

genome pair ` #MUM s time space time space

Mycoplasma 2 20 10 1.85 65.26 0.03 7.99

Streptococcus 2 50 6613 6.76 196.24 0.29 29.71

E. coli 2 100 10817 17.67 472.47 0.46 62.59

Table 3. Running times (in sec.) and space consumption (in megabytes) for computing
MUM s. The column titled #MUM s gives the number of MUM s of length ≥ `. The
time given for unique-match does not include suffix tree construction. esamum reads
the enhanced suffix array from different files via memory mapping.

The most surprising result of our experiments is the superior running time of
the brute force algorithm to compute branching tandem repeats. BFA is always
faster than the other two algorithms. iOBA is faster than OBA if ` ≤ 11, and
slightly slower if ` = 14. This is due to the fact that the additional access to the
text, which is necessary to find the appropriate child interval [ia..ja], outweighs
the efficiency gain due to the reduced number of suffix checks.

We have also measured the running time of a program implementing the
linear time algorithm of [8] to compute all tandem repeats. It is part of the
strmat-package. For E. coli the program needs about 21 sec. (without suffix
tree construction) and 490 MB main memory to deliver all tandem repeats of
length at least 2. The linear time algorithm of [11] takes 4.7 sec. using 63 MB of
main memory. For the same task our fastest program BFA (with an additional
post processing step to compute non-branching tandem repeats from branching
tandem repeats) requires 1.7 sec and 27 MB of main memory.

The running times and space results shown in Table 3 reveal that esamum
is at least 20 times faster than unique-match, using only 15% of the space.

All in all, the experiments show that our programs based on enhanced suffix
arrays define the state-of-the-art in computing different kinds of repeats and
maximal matches.

14

References

1. M.I. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal Exact String Matching
based on Suffix Arrays. In Proceedings of the Ninth International Symposium on

String Processing and Information Retrieval. Springer-Verlag, Lecture Notes in
Computer Science, 2002.

2. A. Apostolico. The Myriad Virtues of Subword Trees. In Combinatorial Algorithms

on Words, Springer-Verlag, pages 85–96, 1985.
3. J. Bentley and R. Sedgewick. Fast Algorithms for Sorting and Searching Strings. In

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 360–369,
1997.

4. M. Burrows and D.J. Wheeler. A Block-Sorting Lossless Data Compression Algo-
rithm. Research Report 124, Digital Systems Research Center, 1994.

5. A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and S.L. Salzberg.
Alignment of Whole Genomes. Nucleic Acids Res., 27:2369–2376, 1999.

6. J. A. Eisen, J. F. Heidelberg, O. White, and S.L. Salzberg. Evidence for Symmet-
ric Chromosomal Inversions Around the Replication Origin in Bacteria. Genome

Biology, 1(6):1–9, 2000.
7. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, 1997.
8. D. Gusfield and J. Stoye. Linear Time Algorithms for Finding and Representing

all the Tandem Repeats in a String. Report CSE-98-4, Computer Science Division,
University of California, Davis, 1998.

9. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-Time Longest-
Common-Prefix Computation in Suffix Arrays and its Applications. In Proceedings

of the 12th Annual Symposium on Combinatorial Pattern Matching, pages 181–192.
Lecture Notes in Computer Science 2089, Springer-Verlag, 2001.

10. J. Knight, D. Gusfield, and J. Stoye. The Strmat Software-Package, 1998.
http://www.cs.ucdavis.edu/ gusfield/strmat.tar.gz.

11. R. Kolpakov and G. Kucherov. Finding Maximal Repetitions in a Word in Linear
Time. In Symposium on Foundations of Computer Science, pages 596–604. IEEE
Computer Society, 1999.

12. S. Kurtz. Reducing the Space Requirement of Suffix Trees. Software—Practice

and Experience, 29(13):1149–1171, 1999.
13. S. Kurtz, J.V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye, and

R. Giegerich. REPuter: The Manifold Applications of Repeat Analysis on a Ge-
nomic Scale. Nucleic Acids Res., 29(22):4633–4642, 2001.

14. E.S. Lander, L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin, K. De-
von, and K. Dewar, et. al. Initial Sequencing and Analysis of the Human Genome.
Nature, 409:860–921, 2001.

15. N.J. Larsson and K. Sadakane. Faster Suffix Sorting. Technical Report LU-CS-
TR:99-214, Dept. of Computer Science, Lund University, 1999.

16. U. Manber and E.W. Myers. Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, 22(5):935–948, 1993.

17. C. O’Keefe and E. Eichler. The Pathological Consequences and Evolutionary Im-
plications of Recent Human Genomic Duplications. In Comparative Genomics,
pages 29–46. Kluwer Press, 2000.

18. J. Stoye and D. Gusfield. Simple and Flexible Detection of Contiguous Repeats
Using a Suffix Tree. Theoretical Computer Science, 270(1-2):843–856, 2002.

15

