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Abstract

The suffix tree is one of the most important data structures in string processing and comp
genomics. However, the space consumption of the suffix tree is a bottleneck in large scale a
tions such as genome analysis. In this article, we will overcome this obstacle. We will show
every algorithm that uses a suffix tree as data structure can systematically be replaced with a
rithm that uses an enhanced suffix array and solves the same problem in the same time com
The generic nameenhanced suffix array stands for data structures consisting of the suffix array
additional tables. Our new algorithms are not only more space efficient than previous ones, b
are also faster and easier to implement.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The suffix tree is undoubtedly one of the most important data structures in
processing. This is particularly true if the sequences to be analyzed are very large
not change. An example of prime importance from the field of bioinformatics is gen
analysis, where the sequences under consideration are whole genomes (the human
for example, contains more than 3· 109 base pairs).

The suffix tree of a sequenceS is an index structure that can be computed and st
in O(n) time and space [32], wheren= |S|. Once constructed, it can be used to efficien
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The suffix tree applications from [15] and the kinds of traversals they require

Application Type of tree traversal

Bottom-up Top-down Suffix-links

Supermaximal repeats
√

Maximal repeats
√

Maximal repeated pairs
√

Longest common substring
√

All-pairs suffix-prefix matching
√

Ziv–Lempel decomposition
√

Common substrings of multiple strings
√ √

Exact string matching
√

Exact set matching
√

Matching statistics
√ √

Construction of DAWGs
√ √

solve a “myriad” of string processing problems [3], and Gusfield devotes about 70
of his book [15] to applications of suffix trees. These applications can be classified in
following kinds of tree traversals:

• a bottom-up traversal of the complete suffix tree,
• a top-down traversal of a subtree of the suffix tree,
• a traversal of the suffix tree using suffix links.

Table 1 shows some of the suffix-tree applications discussed in [15] plus the kind
versal they use.

While suffix trees play a prominent role in algorithmics, they are not as widespre
actual implementations of software tools as one should expect. There are two major r
for this:

(i) Although being asymptotically linear, the space consumption of a suffix tree is
large; even recently improved implementations of linear time constructions still re
20 bytes per input character in the worst case; see, e.g., [25].

(ii) In most applications, the suffix tree suffers from a poor locality of memory refere
which causes a significant loss of efficiency on cached processor architecture
renders it difficult to store in secondary memory.

These problems have been identified in several large scale applications like the
analysis of whole genomes [27] and the comparison of complete genomes [8,17].

More space efficient data structures than the suffix tree exist. The most promine
is thesuffix array, which was introduced by Manber and Myers [29] and independent
Gonnet et al. [13] under the name PAT array. The suffix array requires only 4n bytes in its
basic form and it can be constructed in O(n) time in the worst case by first constructin
the suffix tree ofS; see [15]. Very recently, it was shown independently and contemp
neously in [19,21,23] that a direct linear time construction of the suffix array is pos
However, at first glance, it seems that the suffix array has a disadvantage over the
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tree: It is not clear that (and how) every algorithm using a suffix tree can be replaced with
lexity.

o

alent
how
by a

rsals
.
maxi-

array.
owed
anced
tion

duce
ffix
s of

all
rsal of
rs and
nd the

-down
itional

y
wered

-table
is
versal

e will

uffix
y with
ies of
on

equire-
tored
no
an algorithm based on a suffix array solving the same problem in the same time comp
For example, using only the basic suffix array, it takes O(m logn) time in the worst case t
answer decision queries of the type “IsP a substring ofS?”, wherem= |P |. In this paper,
we will show that every algorithm using a suffix tree can be replaced with an equiv
algorithm based on a suffix array and additional information. It will be demonstrated
to efficiently solve all problems with enhanced suffix arrays that are usually solved
bottom-up or a top-down traversal of the suffix tree. Moreover, we will show how trave
of the suffix tree that use suffix links can be simulated over an enhanced suffix array

In Section 3, we treat applications (such as computing supermaximal repeats and
mal unique matches) that are solely based on the properties of the enhanced suffix

In Section 4, we will take the approach of Kasai et al. [20] one step further. They sh
that every bottom-up traversal of a suffix tree can be simulated on a suffix array enh
with the longest common prefix (lcp) information, but they did not take the informa
of the child nodes of an internal node of the suffix tree into account. We will intro
the concept oflcp-interval trees to remedy this. The lcp-interval tree of an enhanced su
array is only conceptual (i.e., it is not really built) but it allows us to simulate all kind
suffix tree traversals very efficiently.

With the help of the lcp-interval tree, it will be shown in Section 5 how to solve
problems with enhanced suffix arrays that are usually solved by a bottom-up trave
the suffix tree. As examples, we show how to compute all maximal repeated pai
the Ziv–Lempel decomposition of a string. These application use the suffix array a
lcp-table, both of which can be stored in 4n bytes.

In Section 6, we are concerned with problems that are usually solved by a top
traversal of the suffix tree. A prime example is exact pattern matching. Using an add
table, Manber and Myers [29] showed that decision queries can be answered in O(m +
logn) time in the worst case. However, no O(m) time algorithm based on the suffix arra
was known for this task. In this paper, we will show how decision queries can be ans
in optimal O(m) time and how to find allz occurrences of a patternP in optimal O(m+ z)
time. This new result is achieved by using the basic suffix array enhanced with the lcp
and an additional table, called the child-table, that requires 4n bytes. Our new approach
not confined to exact pattern matching. In general, we can simulate any top-down tra
of the suffix tree by means of the enhanced suffix array. To further exemplify this, w
show how to efficiently compute all shortest unique substrings ofS.

In Section 7 we show how to incorporate the concept of suffix links (known from s
trees) into enhanced suffix arrays. To this end, we further enhance the suffix arra
an additional table, called the suffix link table, that stores the left and right boundar
suffix link intervals. This table can be stored in 8n bytes. As a corresponding applicati
we show how to compute matching statistics in O(m) time for a string of lengthm, using
the enhanced suffix array.

Section 8 presents implementation details that considerably reduce the space r
ment. It will be shown that in practice both the lcp-table and the child-table can be s
in n bytes, whereas the suffix link table requires 2n bytes. This space reduction entails
loss of performance.
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Section 9 presents experimental results that show the practical usefulness of our algo-
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The last section concludes with a brief summary of the contributions of this ar

provides pointers to related work, and outlines an alternative approach to simulate
down traversal of the suffix tree.

Parts of this article appeared in [1] and [2].

2. Basic notions

LetΣ be a finite orderedalphabet. Σ∗ is theset of all strings over Σ . We useΣ+ to
denote the setΣ∗ \ {ε} of non-empty strings. LetS be a string of length|S| = n overΣ . To
simplify analysis, we suppose that the size of the alphabet is a constant, and thatn < 232.
The latter implies that an integer in the range[0, n] can be stored in 4 bytes. We assu
that the special symbol $ is an element ofΣ (which is larger then all other elements) b
does not occur inS. S[i] denotes thecharacter at position i in S, for 0� i < n. For i � j ,
S[i..j ] denotes thesubstring S starting with the character at positioni and ending with the
character at positionj . The substringS[i..j ] is also denoted by thepair (i, j) of positions.

A suffix tree for the stringS is a rooted directed tree with exactlyn+1 leaves numbere
0 to n. Each internal node, other than the root, has at least two children and each e
labeled with a nonempty substring ofS$. No two edges out of a node can have edge-la
beginning with the same character. The key feature of the suffix tree is that for anyi,
the concatenation of the edge-labels on the path from the root to leafi exactly spells ou
the stringSi , whereSi = S[i..n − 1]$ denotes theith nonempty suffix of the stringS$,
0 � i � n. Fig. 1 shows the suffix tree for the stringS = acaaacatat .

The suffix array suftab of the stringS is an array of integers in the range 0 ton,
specifying the lexicographic ordering of then + 1 suffixes of the stringS$. That is,
Ssuftab[0], Ssuftab[1], . . . , Ssuftab[n] is the sequence of suffixes ofS$ in ascending lexico
graphic order. The suffix array requires 4n bytes.

Theinverse suffix array suftab−1 is a table of sizen+1 such thatsuftab−1[suftab[q]] =
q for any 0� q � n. suftab−1 can be computed in linear time from the suffix array a
needs 4n bytes.

Fig. 1. The suffix tree forS = acaaacatat .
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The tablebwttab contains theBurrows and Wheeler transformation [6] known from
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data compression. It is a table of sizen+ 1 such that for everyi,0 � i � n, bwttab[i] =
S[suftab[i] − 1] if suftab[i] �= 0. bwttab[i] is undefined ifsuftab[i] = 0. The tablebwttab
is stored inn bytes and constructed in one scan over the suffix array in O(n) time.

The lcp-table lcptab is an array of integers in the range 0 ton. We definelcptab[0] = 0
andlcptab[i] is the length of the longest common prefix ofSsuftab[i−1] andSsuftab[i], for 1�
i � n. SinceSsuftab[n] = $, we always havelcptab[n] = 0. The lcp-table can be compute
as a by-product during the construction of the suffix array, or alternatively, in linear
from the suffix array [20]. The lcp-table requires 4n bytes in the worst case.

3. Algorithms based on lcp-intervals

3.1. Motivation: repeat analysis and genome comparison

To start with, we will shed some light on the underlying problem. Repeat ana
plays a key role in the study, analysis, and comparison of complete genomes.
analysis of a single genome, a basic task is to characterize and locate the repetit
ments of the genome. In the comparison of two or more genomes, a basic task is
similar subsequences of the genomes. This problem can also be reduced to the
tation of certain types of repeats of the string that consists of the concatenated ge
cf. [8,17].

The repetitive elements of the human genome can be generally classified in
large groups: dispersed repetitive DNA and tandemly repeated DNA. Dispersed
tions vary in size and content and fall into two basic categories: transposable ele
and segmental duplications [28]. Transposable elements belong to one of the fol
four classes: SINEs (short interspersed nuclear elements), LINEs (long interspers
clear elements), LTR (long terminal repeats), and transposons. Segmental duplic
which might contain complete genes, have been divided into two classes: chromo
specific and trans-chromosome duplications [30]. Tandemly repeated DNA can a
classified into two categories: simple sequence repetitions (relatively shortk-mers such as
micro and minisatellites) and larger ones, which are called blocks of tandemly rep
segments.

While bacterial genomes usually do not contain large parts of redundant DNA
genomes of higher organisms are often very repetitive. For example, 50% of the
lion basepairs of the human genome consist of repeats. Repeats also comprise 11%
mustard weed genome, 7% of the worm genome and 3% of the fly genome [28]. C
one needs extensive algorithmic support for a systematic study of repetitive DNA
genomic scale. The algorithms for this task usually use the suffix tree to locate rep
structures such as maximal or supermaximal repeats; see [15]. In this section we sh
to locate all supermaximal repeats, while Section 5.1 treats maximal repeated pairs
recall the definitions of these notions.

A pair of substringsR = ((i1, j1), (i2, j2)) is a repeated pair if and only if (i1, j1) �=
(i2, j2) and S[i1..j1] = S[i2..j2]. The length ofR is j1 − i1 + 1. A repeated pai
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S[j1 + 1] �= S[j2 + 1]. A repeated pair is calledmaximal if it is left and right max-
imal. A substringω of S is a (maximal) repeat if there is a (maximal) repeated pa
((i1, j1), (i2, j2)) such thatω = S[i1..j1]. A supermaximal repeat is a maximal repeat tha
never occurs as a substring of any other maximal repeat.

3.2. The lcp-intervals

We start this subsection with the introduction of the first essential concept of this
cle, namely lcp-intervals. Then we will derive two new algorithms that solely exploi
properties of lcp-intervals. The algorithms are much simpler than the correspondin
based on suffix trees.

Definition 3.1. An interval[i..j ], 0� i < j � n, is anlcp-interval of lcp-value � if

1. lcptab[i]< �,
2. lcptab[k] � � for all k with i + 1 � k � j ,
3. lcptab[k] = � for at least onek with i + 1 � k � j ,
4. lcptab[j + 1]< �.

We will also use the shorthand�-interval (or even�-[i..j ]) for an lcp-interval[i..j ] of lcp-
value�. Every indexk, i + 1 � k � j , with lcptab[k] = � is called�-index. The set of al
�-indices of an�-interval [i..j ] will be denoted by�Indices(i, j). If [i..j ] is an�-interval
such thatω = S[suftab[i]..suftab[i] + �− 1] is the longest common prefix of the suffix
Ssuftab[i], Ssuftab[i+1], . . . , Ssuftab[j ], then[i..j ] is called theω-interval.

Fig. 2. The enhanced suffix array of the stringS = acaaacatat and its lcp-interval tree.

1 This definition has to be extended to the casesi1 = 0 or i2 = 0, but throughout the paper we do not explici
state boundary cases like these.
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lcptab[0] = 0 < 1, lcptab[5 + 1] = 0 < 1, lcptab[k] � 1 for all k with 1 � k � 5, and
lcptab[2] = 1. Furthermore, 1-[0..5] is thea-interval and�Indices(0,5)= {2,4}. We shall
see later that lcp-intervals correspond to internal nodes of the suffix tree.

3.3. A new algorithm for finding supermaximal repeats

Definition 3.2. An �-interval[i..j ] is called alocal maximum in the lcp-table iflcptab[k] =
� for all i + 1 � k � j .

For instance, in the lcp-table of Fig. 2, the local maxima are the intervals[0..1], [2..3],
[4..5], [6..7], and[8..9].

Lemma 3.3. A string ω is a supermaximal repeat if and only if there is an �-interval [i..j ]
such that

• [i..j ] is a local maximum in the lcp-table and [i..j ] is the ω-interval,
• the characters bwttab[i],bwttab[i + 1], . . . ,bwttab[j ] are pairwise distinct.

Proof. (If) Sinceω is a common prefix of the suffixesSsuftab[i], . . . , Ssuftab[j ] andi < j , it is
certainly a repeat. The charactersS[suftab[i]+�], S[suftab[i+1]+�], . . . , S[suftab[j ]+�]
are pairwise distinct because[i..j ] is a local maximum in the lcp-table. By the seco
condition, the charactersbwttab[i],bwttab[i+ 1], . . . ,bwttab[j ] are also pairwise distinc
It follows thatω is a maximal repeat and that there is no repeat inS which containsω. In
other words,ω is a supermaximal repeat.

(Only if) Let ω be a supermaximal repeat of length|ω| = �. Furthermore, suppos
that suftab[i], suftab[i + 1], . . . , suftab[j ], 0 � i < j � n, are the consecutive entries
suftab such thatω is a common prefix ofSsuftab[i], Ssuftab[i+1], . . . , Ssuftab[j ] but neither of
Ssuftab[i−1] nor of Ssuftab[j+1]. Becauseω is supermaximal, the charactersS[suftab[i] +
�], S[suftab[i + 1] + �], . . . , S[suftab[j ] + �] are pairwise distinct. Hencelcptab[k] = �
for all k with i + 1 � k � j . Furthermore,lcptab[i] < � and lcptab[j + 1] < � hold be-
cause otherwiseω would also be a prefix ofSsuftab[i−1] or Ssuftab[j+1]. All in all, [i..j ]
is a local maximum of the arraylcptab and [i..j ] is theω-interval. Finally, the charac
tersbwttab[i],bwttab[i + 1], . . . ,bwttab[j ] are pairwise distinct becauseω is supermaxi-
mal. ✷

The preceding lemma does not only imply that the number of supermaximal re
is smaller thann, but it also suggests a simple linear time algorithm to compute al
permaximal repeats of a stringS: Find all local maxima in the lcp-table ofS. For every
local maximum[i..j ] check whetherbwttab[i],bwttab[i + 1], . . . ,bwttab[j ] are pairwise
distinct characters. If so, report the stringS[suftab[i]..suftab[i] + lcptab[i] − 1] as super-
maximal repeat. The reader is invited to compare our simple algorithm with the suffi
based algorithm of [15, p. 146].
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3.4. Computation of maximal unique matches
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Next, we tackle a problem that has its origin in genome comparisons. Nowaday
DNA sequences of entire genomes are being determined at a rapid rate. For ex
the genomes of several strains of the bacteriaE. coli and S. aureus have already bee
completely sequenced. When the genomic DNA sequences of closely related org
become available, one of the first questions researchers ask is how the genomes ali
alignment may help, for example, in understanding why a strain of a bacterium is p
genic or resistant to antibiotics while another is not. The software toolMUMmer [8] has
been developed to efficiently align two sufficiently similar genomic DNA sequences. I
first phase of its underlying algorithm, a maximal unique match (MUM) decomposition of
two genomesS1 andS2 is computed. Using the suffix tree ofS1#S2, MUMs can be com
puted in O(n) time and space, wheren = |S1#S2| and # is a symbol neither occurring
S1 nor in S2. However, the space consumption of the suffix tree has been identified
a major problem when comparing large genomes; see [8]. We will solve this proble
using the suffix array enhanced with the lcp-table.

Definition 3.4. Given two sequencesS1 andS2, aMUM is a sequence that occurs exac
once inS1 and once inS2, and is not contained in any longer such sequence.

Lemma 3.5. Let # be a unique separator symbol not occurring in S1 and S2 and let S =
S1#S2. The string u is a MUM of S1 and S2 if and only if u is a supermaximal repeat in S
such that

(1) there is only one maximal repeated pair ((i1, j1), (i2, j2)) with

u= S[i1..j1] = S[i2..j2],
(2) j1<p < i2, where p = |S1| is the position of # in S.

Proof. (If) It is a consequence of conditions (1) and (2) thatu occurs exactly once inS1
and once inS2. Because the repeated pair((i1, j1), (i2, j2)) is maximal,u is aMUM.

(Only if) If u is a MUM of the sequencesS1 andS2, then it occurs exactly once inS1
(say,u= S1[i1..j1]) and once inS2 (say,u= S2[i2..j2]), and is not contained in any long
such sequence. Clearly,((i1, j1), (p+ 1+ i2,p+ 1+ j2)) is a repeated pair inS = S1$S2,
wherep = |S1|. Becauseu occurs exactly once inS1 and once inS2, and is not containe
in any longer such sequence, it follows thatu is a supermaximal repeat inS satisfying
conditions (1) and (2). ✷

The first version ofMUMmer [8] computedMUMs in O(|S|) time and space with th
help of the suffix tree ofS = S1#S2. Using an enhanced suffix array, this task can
done more time and space economically as follows: Find all local maxima in the
table ofS = S1#S2. For every local maximum[i..j ] check whetheri + 1 = j , bwttab[i] �=
bwttab[j ], andsuftab[i]<p < suftab[j ]. If so, reportS[suftab[i]..suftab[i]+ lcptab[i]−1]
asMUM. This simple algorithm was found independently by Hon and Sadakane [18
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the authors of this article [1]. In Section 9, we compare the performance ofMUMmer with
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Recently, Delcher et al. [9] presented a new version ofMUMmer, calledMUMmer 2. It

constructs the suffix tree ofS1 and computes matches by streamingS2 against it. A sim-
ilar, but more space efficient algorithm can be implemented based on the enhance
array ofS1. See [26] for details of this algorithm and for an experimental comparison
MUMmer 2.

The algorithms to compute supermaximal repeats andMUMs require tablessuftab,
lcptab, andbwttab, but do not access the input sequence. More precisely, instead
input string, we use tablebwttab without increasing the total space requirement. Thi
because the tablessuftab, lcptab, andbwttab can be accessed in sequential order, thus l
ing to an improved cache coherence and in turn considerably reduced running tim
Section 9. The same technique is applied in the computation of maximal repeated p
Section 5.1.

4. The lcp-interval tree of a suffix array

Kasai et al. [20] presented a linear time algorithm to simulate the bottom-up traver
a suffix tree with a suffix array and its lcp-information. The following algorithm is a sl
modification of their algorithm TraverseWithArray. It computes all lcp-intervals of the
table with the help of a stack. The elements on the stack are lcp-intervals represen
tuples〈lcp, lb, rb〉, wherelcp is the lcp-value of the interval,lb is its left boundary, andrb
is its right boundary. In Algorithm 4.1,push (pushes an element onto the stack) andpop
(pops an element from the stack and returns that element) are the usual stack ope
while top provides a pointer to the topmost element of the stack. Furthermore,⊥ stands
for an undefined value.

Algorithm 4.1 (Computation of lcp-intervals (adapted from Kasai et al. [20])).

push(〈0,0,⊥〉)
for i := 1 to n do

lb := i − 1
while lcptab[i]< top.lcp

top.rb := i − 1
interval := pop
report(interval)
lb := interval.lb

if lcptab[i]> top.lcp then
push(〈lcptab[i], lb,⊥〉)

Here, we will take the approach of Kasai et al. [20] one step further and introduc
second essential concept of this article—the lcp-interval tree.
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Definition 4.2. An m-interval [l..r] is said to beembedded in an�-interval[i..j ] if it is a
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subinterval of[i..j ] (i.e.,i � l < r � j ) andm> �.2 The�-interval[i..j ] is then called the
intervalenclosing [l..r]. If [i..j ] encloses[l..r] and there is no interval embedded in[i..j ]
that also encloses[l..r], then[l..r] is called achild interval of [i..j ].

This parent-child relationship constitutes a conceptual (or virtual) tree which we
the lcp-interval tree of the suffix array. The root of this tree is the 0-interval[0..n]; see
Fig. 2. The lcp-interval tree is basically the suffix tree without leaves (more precisely,
is a one-to-one correspondence between the nodes of the lcp-interval tree and the
nodes of the suffix tree). These leaves are left implicit in our framework, but every le
the suffix tree, which corresponds to the suffixSsuftab[l], can be represented by asingleton
interval [l..l]. The parent interval of such a singleton interval is the smallest lcp-int
[i..j ] with l ∈ [i..j ]. For instance, continuing the example of Fig. 2, the child interva
[0..5] are[0..1], [2..3], and[4..5]. The next theorem shows how the parent-child relat
ship of the lcp-intervals can be determined from the stack operations in Algorithm 4

Theorem 4.3. Consider the for-loop of Algorithm 4.1 for some index i . Let top be the
topmost interval on the stack and top−1 be the interval next to it (note that top−1.lcp <
top.lcp). If lcptab[i]< top.lcp, then before top will be popped from the stack in the while-
loop, the following holds:

(1) If lcptab[i] � top−1.lcp, then top is the child interval of top−1.
(2) If top−1.lcp< lcptab[i]< top.lcp, then top is the child interval of the lcptab[i]-interval

that contains i .

Proof. We will show (1). The other case follows similarly. First, we show thattop is em-
bedded intop−1. The following invariant is maintained in the for-loop of Algorithm 4.
if 〈�1, lb1, rb1〉, . . . , 〈�k, lbk, rbk〉 are the intervals on the stack, wheretop = 〈�k, lbk, rbk〉
thenlbi � lbj and�i < �j for all 1 � i < j � k. Furthermore, because〈�j , lbj , rbj 〉 will
be popped from the stack before〈�i , lbi , rbi〉, it follows that rbj � rbi . Thus, the�j -
interval[lbj ..rbj ] is embedded in the�i -interval[lbi ..rbi]. In particular,top is embedded in
top−1.

If top was not the child interval oftop−1, then there would be an lcp-interv
〈lcp′, lb′, rb′〉 such thattop is embedded in〈lcp′, lb′, rb′〉 and〈lcp′, lb′, rb′〉 is embedded in
top−1. This, however, can only happen if〈lcp′, lb′, rb′〉 is an interval on the stack that
abovetop−1. This contradiction proves the claim.✷

An important consequence of Theorem 4.3 is the correctness of Algorithm 4.4. T
the lcp-interval tree is traversed in a bottom-up fashion by a linear scan of the
table, while storing needed information on a stack. We stress that the lcp-interval
not really build: whenever an�-interval is processed by the generic functionprocess,
only its child intervals have to be known. These are determined solely from the

2 Note that we cannot have bothi = l andr = j becausem> �.
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information, i.e., there are no explicit parent-child pointers in our framework. In con-
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trast to Algorithm 4.1, Algorithm 4.4 computes all lcp-intervals of the lcp-tablewith
the child information. Here, the elements on the stack are lcp-intervals represen
quadruples〈lcp, lb, rb, childList〉, wherelcp is the lcp-value of the interval,lb is its left
boundary,rb is its right boundary, andchildList is a list of its child intervals. Further
more,add([c1, . . . , ck], c) appends the elementc to the list [c1, . . . , ck] and returns the
result.

Algorithm 4.4 (Traverse and process the lcp-interval tree).

lastInterval := ⊥
push(〈0,0,⊥, [ ]〉)
for i := 1 to n do

lb := i − 1
while lcptab[i]< top.lcp

top.rb := i − 1
lastInterval := pop
process(lastInterval)
lb := lastInterval.lb
if lcptab[i] � top.lcp then

top.childList := add(top.childList, lastInterval)
lastInterval := ⊥

if lcptab[i]> top.lcp then
if lastInterval �= ⊥ then

push(〈lcptab[i], lb,⊥, [lastInterval]〉)
lastInterval := ⊥

else push(〈lcptab[i], lb,⊥, [ ]〉)

In Section 5, we will show how to solve several problems merely by specifying
functionprocess called in line 8 of Algorithm 4.4.

5. Bottom-up traversals

In this section, we show how to efficiently solve all problems with enhanced s
arrays that are usually solved by a bottom-up traversal of the suffix tree. As exampl
show how to compute all maximal repeated pairs and the Ziv–Lempel decompositio
string.

5.1. An efficient implementation of an optimal algorithm for finding maximal repeated
pairs

The computation of maximal repeated pairs plays an important role in the analy
a genome. The algorithm of Gusfield [15, p. 147] computes maximal repeated pai
sequenceS of lengthn in O(|Σ|n+ z) time, wherez is the number of maximal repeate
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was first implemented in theREPuter-program [27], based on space efficient suffix tr
described in [25]. The software toolREPuter uses maximal repeated pairs as seeds
finding degenerate (or approximate) repeats. In this section, we show how to impl
Gusfield’s algorithm using enhanced suffix arrays. This considerably reduces the sp
quirements, thus removing a bottle neck in the algorithm. As a consequence, much
genomes can be searched for repetitive elements. As in the algorithms in Section 3
implementation requires tablessuftab, lcptab, andbwttab, but does not access the inp
sequence. The accesses to the three tables are in sequential order, thus leading t
proved cache coherence and in turn to a considerably reduced running time; this is v
in Section 9.

We begin by introducing some notation: Let⊥ stand for the undefined character. W
assume that it is different from all characters inΣ . Let [i..j ] be an�-interval andu =
S[suftab[i]..suftab[i] + �− 1]. DefineP[i..j ] to be the set of positionsp such thatu is a
prefix ofSp , i.e.,P[i..j ] = {suftab[r] | i � r � j }. We divideP[i..j ] into disjoint and possibly
empty sets according to the characters to the left of each position: For anya ∈ Σ ∪ {⊥}
define

P[i..j ](a)=
{ {0 | 0∈ P[i..j ]} if a = ⊥,

{p | p ∈P[i..j ],p > 0, andS[p− 1] = a} otherwise.

The algorithm computes position sets in a bottom-up strategy. In terms of an lcp-in
tree, this means that the lcp-interval[i..j ] is processed only after all child intervals of[i..j ]
have been processed.

Suppose[i..j ] is a singleton interval, i.e.,i = j . Let p = suftab[i]. ThenP[i..j ] = {p}
and

P[i..j ](a)=
{ {p} if p > 0 andS[p− 1] = a or p = 0 anda = ⊥,

∅ otherwise.
Now suppose thati < j . For eacha ∈Σ ∪{⊥},P[i..j ](a) is computed step by step whi

processing the child intervals of[i..j ]. These are processed from left to right. Supp
that they are numbered, and that we have already processedq child intervals of[i..j ]. By
Pq[i..j ](a) we denote the subset ofP[i..j ](a) obtained after processing theq th child interval
of [i..j ]. Let [i ′..j ′] be the(q + 1)th child interval of[i..j ]. Due to the bottom-up strateg
[i ′..j ′] has been processed and hence the position setsP[i′..j ′](b) are available for any
b ∈Σ ∪ {⊥}.

The interval[i ′..j ′] is processed in the following way: First, maximal repeated pairs
output by combining the position setPq[i..j ](a), a ∈Σ ∪ {⊥}, with position setsP[i′..j ′ ](b),
b ∈ Σ ∪ {⊥}. In particular,((p,p + � − 1), (p′,p′ + �− 1)), p < p′, are output for all
p ∈Pq[i..j ](a) andp′ ∈ P[i′..j ′ ](b), a, b ∈Σ ∪ {⊥} anda �= b.

It is clear thatu occurs at positionp andp′. Hence((p,p + �− 1), (p′,p′ + �− 1))
is a repeated pair. By construction, only those positionsp andp′ are combined for which
the characters immediately to the left, i.e., at positionsp− 1 andp′ − 1 (if they exist), are
different. This guarantees left-maximality of the output repeated pairs.

The position setsPq[i..j ](a) were inherited from child intervals of[i..j ] that are differen
from [i ′..j ′]. Hence the characters immediately to the right ofu at positionsp + � and
p′ +� (if they exist) are different. As a consequence, the output repeated pairs are ma
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[i..j ](e) := Pq[i..j ](e) ∪ P[i′..j ′](e) is computed for alle ∈Σ ∪ {⊥}. That is, the

position sets are inherited from[i ′..j ′] to [i..j ].
In Algorithm 4.4, if the functionprocess is applied to an lcp-interval, then all its chi

intervals are available. Hence the maximal repeated pair algorithm can be implemen
a bottom-up traversal of the lcp-interval tree. To this end, the functionprocess in Algo-
rithm 4.4 outputs maximal repeated pairs and further maintains position sets on the
(which are added as a fifth component to the quadruples). The bottom-up traversal r
O(n) time.

There are two operations performed when processing an lcp-interval[i..j ]. Output of
maximal repeated pairs by combining position sets and union of position sets. Each
bination of position sets means to compute their Cartesian product. This delivers a
position pairs, i.e., maximal repeated pairs. Each repeated pair is computed in consta
from the position lists. Altogether, the combinations can be computed in O(z) time, where
z is the number of repeats. The union operation for the position sets can be implem
in constant time, if we use linked lists. For each lcp-interval, we have O(|Σ|) union opera-
tions. Since O(n) lcp-intervals have to be processed, the union and add operations r
O(|Σ|n) time. Altogether, the algorithm runs in O(|Σ|n+ z) time.

Next, we analyze the space consumption of the algorithm. A position setP[i..j ](a) is
the union of position sets of the child intervals of[i..j ]. If the child intervals of[i..j ] have
been processed, the corresponding position sets are obsolete. Hence it is not req
copy position sets. Moreover, we only have to store the position sets for those lcp-in
which are on the stack used for the bottom-up traversal of the lcp-interval tree. S
natural to store references to the position sets on the stack together with other infor
about the lcp-interval. Thus the space required for the position sets is determined
maximal size of the stack. Since this is O(n), the space requirement is O(|Σ|n). In practice,
however, the stack size is much smaller. Altogether the algorithm is optimal, since its
and time requirement is linear in the size of the input plus the output.

5.2. Computing the Ziv–Lempel decomposition

As a second application of the bottom-up traversal of the lcp-interval tree, we will
briefly describe how to compute the Ziv–Lempel decomposition [33,34] of a string
Ziv–Lempel decomposition plays an important role in data compression, and rece
was used in linear time algorithms for the detection of all tandem repeats of a strin
24].

For each positioni of S, let li denote the length of the longest prefix ofS[i..n] that also
occurs as a substring ofS starting at some positionj < i. Let si denote the starting positio
of the leftmost occurrence of this substring inS if li > 0, andsi = 0, otherwise; see Fig. 3

The Ziv–Lempel decomposition ofS is the list of indicesi1, i2, . . . , ik, defined in-
ductively by i1 = 0 and iB+1 = iB + max{1, liB } for B � 1 and iB � n. The substring
S[iB..iB+1−1], 1� B � k, obtained in this way is called theBth block of the Ziv–Lempe
decomposition ofS.

The Ziv–Lempel decomposition of a stringS can also be computedoff-line in linear time
by a bottom-up traversal of the lcp-interval tree; see Algorithm 4.4. To this end, we
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Fig. 3. The values ofsi andli (left) and the Ziv–Lempel decomposition (right).

another valuemin of type integer to the quadruples stored on the stack. This value i
tially set to⊥ and will be updated by theprocess function. At any stage, when the functio
process is applied to an�-interval[i..j ], all its child intervals are known and have alrea
been processed (note that[i..j ] �= [0..n] must hold). Let[l1..r1], [l2..r2], . . . , [lk..rk] be
thek child intervals of[i..j ], stored in itschildList. Let min1, . . . ,mink be the respective
min-values of the child intervals. Let

M = {min1, . . . ,mink} ∪ {
suftab[q] | q ∈ [i..j ] andq /∈ [lp..rp] for all 1 � p � k

}
.

Computemin := minM and assign for allq ∈M with q �= min: sq := min and lq := �.
Finally, for the root[0..n] of the lcp-interval tree, we assign for allq ∈M: sq := 0 and
lq := 0.

6. Top-down traversals

Based on the analogy between the lcp-interval tree and the suffix tree, it is desira
enhance the suffix array with additional information to determine, for any�-interval[i..j ],
all its child intervals in constant time. We achieve this goal by enhancing the suffix
with the lcp-table and an additional table: the child-tablechildtab; see Fig. 4. The child
table is a table of sizen+ 1 indexed from 0 ton and each entry contains three values:up,
down, andnext�Index. Each of these three values requires 4 bytes in the worst cas

Fig. 4. Suffix array of the stringS = acaaacatat enhanced with thelcptab andchildtab. The fields 1, 2, and 3
of the childtab denote theup, down, andnext�Index field. The encircled entries are redundant because they
occur in theup field. The arcs point to the field where theup-value is stored.
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values of eachchildtab-entry are defined as follows (we assume that min∅ = max∅ = ⊥):

childtab[i].up = min
{
q ∈ [0..i − 1] | lcptab[q]> lcptab[i] and

∀k ∈ [q + 1..i − 1] : lcptab[k] � lcptab[q]},
childtab[i].down = max

{
q ∈ [i + 1..n] | lcptab[q]> lcptab[i] and

∀k ∈ [i + 1..q − 1] : lcptab[k]> lcptab[q]},
childtab[i].next�Index

= min
{
q ∈ [i + 1..n] | lcptab[q] = lcptab[i] and

∀k ∈ [i + 1..q − 1] : lcptab[k]> lcptab[i]}.
In essence, the child-table stores the parent-child relationship of lcp-intervals. Ro
speaking, for an�-interval[i..j ] whose�-indices arei1< i2< · · ·< ik, thechildtab[i].down
or childtab[j + 1].up value is used to determine the first�-index i1. The other�-indices
i2, . . . , ik can be obtained fromchildtab[i1].next�Index, . . . , childtab[ik−1].next�Index, re-
spectively. Once these�-indices are known, one can determine all the child interval
[i..j ] according to the following lemma.

Lemma 6.1. Let [i..j ] be an �-interval. If i1< i2< · · ·< ik are the �-indices in ascending
order, then the child intervals of [i..j ] are [i..i1−1], [i1..i2−1], . . . , [ik..j ] (note that some
of them may be singleton intervals).

Proof. Let [l..r] be one of the intervals[i..i1 − 1], [i1..i2 − 1], . . . , [ik..j ]. If [l..r] is a
singleton interval, then it is a child interval of[i..j ]. Suppose that[l..r] is anm-interval.
Since[l..r] does not contain an�-index, it follows that[l..r] is embedded in[i..j ]. Because

lcptab[i1] = lcptab[i2] = · · · = lcptab[ik] = �,
there is no interval embedded in[i..j ] that encloses[l..r]. That is,[l..r] is a child interval
of [i..j ]. Finally, it is not difficult to see that[i..i1 − 1], [i1..i2 − 1], . . . , [ik..j ] are all the
child intervals of[i..j ], i.e., there cannot be any other child interval.✷

As an example, consider the enhanced suffix array in Fig. 4. The 1-[0..5] interval has
the 1-indices 2 and 4. The first 1-index 2 is stored inchildtab[0].down andchildtab[6].up.
The second 1-index is stored inchildtab[2].next�Index. Thus, the child intervals of[0..5]
are[0..1], [2..3], and[4..5]. In Section 6.2, it will be shown in detail how the child-tab
can be used to determine the child intervals of an lcp-interval in constant time.

6.1. Construction of the child-table

The child-table can be computed in linear time by a bottom-up traversal of the
interval tree as in Algorithm 4.4. For clarity of presentation, however, we introducetwo
algorithms to separately construct theup/down values and thenext�Index value of the
child-table. Similar to Algorithm 4.4, Algorithm 6.2 scans the lcp-table in linear order
pushes the current index on the stack if its lcp-value is greater than or equal to the lcp



68 M.I. Abouelhoda et al. / Journal of Discrete Algorithms 2 (2004) 53–86

of top. Otherwise, elements of the stack are popped as long as their lcp-value is greater than
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that of the current index. Based on a comparison of the lcp-values oftop and the curren
index, theup anddown fields of the child-table are filled with elements that are pop
from the stack during the scan.

Algorithm 6.2 (Construction of theup anddown values).

lastIndex := −1
push(0)
for i := 1 to n do

while lcptab[i]< lcptab[top]
lastIndex := pop
if (lcptab[i] � lcptab[top]) and (lcptab[top] �= lcptab[lastIndex]) then

childtab[top].down := lastIndex
/* now lcptab[i] � lcptab[top] holds */
if lastIndex �= −1 then

childtab[i].up := lastIndex
lastIndex := −1

push(i)

For a correctness proof, we need the following lemma.

Lemma 6.3. The following invariants are maintained in the for-loop of Algorithm 6.2: If
i1, . . . , ip are the indices on the stack (where ip is the topmost element), then i1< · · ·< ip
and lcptab[i1] � · · · � lcptab[ip]. Furthermore, if lcptab[ij ] < lcptab[ij+1], then for all k
with ij < k < ij+1 we have lcptab[k]> lcptab[ij+1].

Proof. The lemma holds before the for-loop is executed for the first time. By induction
assume that the lemma holds after the for-loop was executedm times, wherem< n. Con-
sider the(m+ 1)th execution of the for-loop. Suppose there is an indexq with 1 � q < p
such thatlcptab[i1] � · · · � lcptab[iq] � lcptab[m+ 1] < lcptab[iq+1] � · · · � lcptab[ip].
(The cases, wherelcptab[m+1]< lcptab[i1] or lcptab[ip]< lcptab[m+1] are proven sim-
ilarly.) In the while-loop,iq+1, . . . , ip are popped from the stack and in the if-statem
immediately after the while-loop,m + 1 is pushed onto the stack. That is, after
(m+ 1)th execution of the for-loop,i1, . . . , iq ,m+ 1 are on the stack withm+ 1 being
the topmost element. Clearly,i1 < · · · < iq < m + 1 and lcptab[i1] � · · · � lcptab[iq] �
lcptab[m+ 1]. Suppose thatlcptab[iq] < lcptab[m+ 1]. By the inductive hypothesis, fo
everyj ∈ {1, . . . , p} with lcptab[ij ] < lcptab[ij+1], we havelcptab[k] > lcptab[ij+1] for
all k with ij < k < ij+1. It is not difficult to see thatlcptab[k] > lcptab[m+ 1] for all k
with iq < k <m+ 1 is a consequence, and hence the lemma follows.✷
Theorem 6.4. Algorithm 6.2correctly fills the up and down fields of the child-table.

Proof. If the childtab[top].down := lastIndex statement is executed, then we havelcptab[i]
� lcptab[top]< lcptab[lastIndex] andtop < lastIndex< i. Recall thatchildtab[top].down
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1..q − 1] : lcptab[k]> lcptab[q]}. Clearly,lastIndex ∈ [top + 1..n] andlcptab[lastIndex]>
lcptab[top]. Furthermore, according to Lemma 6.3, for allk with top< k < lastIndex we
havelcptab[k]> lcptab[lastIndex]. In other words,lastIndex is an element ofM. Suppose
thatlastIndex is not the maximum ofM. Then there is an elementq ′ inM with lastIndex<
q ′ < i. According to the definition ofM, it follows that lcptab[lastIndex] > lcptab[q ′].
This, however, implies thatlastIndex must have been popped from the stack when indeq ′
was considered. This contradiction shows thatlastIndex is the maximum ofM.

If the childtab[i].up := lastIndex statement is executed, thenlcptab[top] � lcptab[i]<
lcptab[lastIndex] and top < lastIndex < i. Recall thatchildtab[i].up is the minimum of
the setM ′ = {q ∈ [0..i − 1] | lcptab[q] > lcptab[i] and∀k ∈ [q + 1..i − 1] : lcptab[k] �
lcptab[q]}. Clearly, we havelastIndex ∈ [0..i− 1] andlcptab[lastIndex]> lcptab[i]. More-
over, for all k with lastIndex < k < i we have lcptab[k] � lcptab[lastIndex] because
otherwiselastIndex would have been popped earlier from the stack. In other wo
lastIndex ∈ M ′. Suppose thatlastIndex is not the minimum ofM ′. Then there is a
q ′ ∈ M ′ with top < q ′ < lastIndex. According to the definition ofM ′, it follows that
lcptab[lastIndex] � lcptab[q ′] > lcptab[i] � lcptab[top]. Hence, indexq ′ must be an ele
ment betweentop andlastIndex on the stack. This contradiction shows thatlastIndex is the
minimum ofM ′. ✷

The construction of thenext�Index field is easier. One merely has to check whet
lcptab[i] = lcptab[top] holds true. If so, theni is assigned to the fieldchildtab[top].next�
Index. It is not difficult to see that Algorithms 6.2 and 6.5 construct the child-table in li
time and space.

Algorithm 6.5 (Construction of thenext�Index value).

push(0)
for i := 1 to n do

while lcptab[i]< lcptab[top]
pop

if lcptab[i] = lcptab[top] then
lastIndex := pop
childtab[lastIndex].next�Index := i

push(i)

To reduce the space requirement of the child-table, only one field is used in
tice. The down field is needed only if it does not contain the same information
the up field. Fortunately, for an�-interval, only onedown field is required because a
�-interval [i..j ] with k �-indices has at mostk + 1 child intervals. Suppose[l1..r1],
[l2..r2], . . . , [lk..rk], [lk+1..rk+1] are thek + 1 child intervals of[i..j ], where[lq ..rq ] is
an �q -interval andiq denotes its first�q -index for any 1� q � k + 1. In theup field of
childtab[r1 + 1], childtab[r2 + 1], . . . , childtab[rk + 1] we store the indicesi1, i2, . . . , ik,
respectively. Thus, only the remaining indexik+1 must be stored in thedown field of
childtab[rk + 1]. This value can be stored inchildtab[rk + 1].next�Index becauserk + 1 is
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do this, then for a given indexi we must be able to decide whetherchildtab[i].next�Index
contains the next�-index or thechildtab[i].down value. This can be accomplished as f
lows. childtab[i].next�Index contains the next�-index if lcptab[childtab[i].next�Index] =
lcptab[i], whereas it stores thechildtab[i].down value if lcptab[childtab[i].next�Index] >
lcptab[i]. This follows directly from the definition of thenext�Index and down field,
respectively. Moreover, the memory cells ofchildtab[i].next�Index, which are still un-
used, can store the values of theup field. To see this, note thatchildtab[i + 1].up �= ⊥
if and only if lcptab[i] > lcptab[i + 1]. In this case, we havechildtab[i].next�Index = ⊥
andchildtab[i].down = ⊥. In other words,childtab[i].next�Index is empty and can stor
the valuechildtab[i + 1].up; see Fig. 4. Finally, for a given indexi, one can decide
whetherchildtab[i].next�Index contains the valuechildtab[i + 1].up by testing whethe
lcptab[i]> lcptab[i+1]. To sum up, although the child-table theoretically uses three fi
only space for one field is actually required.

6.2. Determining child intervals in constant time

Given the child-table, the first step to locate the child intervals of an�-interval[i..j ] in
constant time is to find the first�-index in[i..j ], i.e., the minimum of the set�Indices(i, j).
This is possible with the help of theup anddown fields of the child-table:

Lemma 6.6. For every �-interval [i..j ] the following statements hold:

(1) i < childtab[j + 1].up � j or i < childtab[i].down � j .
(2) childtab[j + 1].up stores the first �-index in [i..j ] if i < childtab[j + 1].up � j .
(3) childtab[i].down stores the first �-index in [i..j ] if i < childtab[i].down � j .

Proof. (1) First, consider indexj + 1. Supposelcptab[j + 1] = �′ and letI ′ be the cor-
responding�′-interval. If [i..j ] is a child interval ofI ′, then lcptab[i] = �′ and there is
no �-index in [i + 1..j ]. Therefore,childtab[j + 1].up = min�Indices(i, j), and conse
quentlyi < childtab[j + 1].up � j . If [i..j ] is not a child interval ofI ′, then we conside
index i. Supposelcptab[i] = �′′ and let I ′′ be the corresponding�′′-interval. Because
lcptab[j + 1] = �′ < �′′ < �, it follows that [i..j ] is a child interval ofI ′′. We conclude
thatchildtab[i].down = min�Indices(i, j). Hence,i < childtab[i].down � j .

(2) If i < childtab[j + 1].up � j , then the claim follows from

childtab[j + 1].up = min
{
q ∈ [i + 1..j ] | lcptab[q]> lcptab[j + 1],

lcptab[k] � lcptab[q] ∀k ∈ [q + 1..j ]}
= min

{
q ∈ [i + 1..j ] | lcptab[k] � lcptab[q] ∀k ∈ [q + 1..j ]}

= min�Indices(i, j).

(3) Let i1 be the first�-index of [i..j ]. Thenlcptab[i1] = � > lcptab[i] and for allk ∈
[i+1..i1−1] the inequalitylcptab[k]> �= lcptab[i1] holds. Moreover, for any other inde
q ∈ [i + 1..j ], we havelcptab[q] � � > lcptab[i] but not lcptab[i1]> lcptab[q]. ✷
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i2 < i3 < · · · < ik in [i..j ], where 1� k � |Σ|, are obtained successively from t
next�Index field of childtab[i1], childtab[i2], . . . , childtab[ik−1]. It follows that the child
intervals of[i..j ] are the intervals[i..i1 − 1], [i1..i2 − 1], . . . , [ik..j ]; see Lemma 6.1. Th
pseudo-code implementation of the following functiongetChildIntervals takes a pair(i, j)
representing an�-interval[i..j ] as input and returns a list containing the pairs(i, i1 − 1),
(i1, i2 − 1), . . . , (ik, j).

Algorithm 6.7 (getChildIntervals, applied to an lcp-interval[i..j ] �= [0..n]).

intervalList = [ ]
if i < childtab[j + 1].up � j then
i1 := childtab[j + 1].up

else i1 := childtab[i].down
add(intervalList, (i, i1 − 1))
while childtab[i1].next�Index �= ⊥ do
i2 := childtab[i1].next�Index
add(intervalList, (i1, i2 − 1))
i1 := i2

add(intervalList, (i1, j))

The functiongetChildIntervals runs in time O(|Σ|). Since we assume that|Σ| is a
constant,getChildIntervals runs in constant time. UsinggetChildIntervals one can simulate
every top-down traversal of a suffix tree on an enhanced suffix array. To this end, o
easily modify the functiongetChildIntervals to a functiongetInterval which takes an�-
interval [i..j ] and a charactera ∈Σ as input and returns the child interval[l..r] of [i..j ]
(which may be a singleton interval) whose suffixes have the charactera at position�. Note
that all the suffixes in[l..r] share the same�-character prefix because[l..r] is a subinterva
of [i..j ]. If such an interval[l..r] does not exist,getInterval returns⊥. Clearly,getInterval
has the same time complexity asgetChildIntervals.

With the help of Lemma 6.6, it is also easy to implement a functiongetlcp(i, j)
that determines the lcp-value of an lcp-interval[i..j ] in constant time as follows: I
i < childtab[j + 1].up � j , thengetlcp(i, j) returns the valuelcptab[childtab[j + 1].up],
otherwise it returnslcptab[childtab[i].down].

6.3. Answering queries in optimal time

As already mentioned in the introduction, given the basic suffix array, it takes O(m logn)
time in the worst case to answer decision queries of lengthm. By using an additional tabl
(similar to the lcp-table), this time complexity can be improved to O(m+ logn); see [29].
The logarithmic terms are due to binary searches, which locateP in the suffix array ofS.
In this section, we show how enhanced suffix arrays allow us to answer decision que
the type “IsP a substring ofS?” in optimal O(m) time. Moreover, enumeration queries
the type “Where are allz occurrences ofP in S?” can be answered in optimal O(m+ z)
time, totally independent of the size ofS.
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c := 0
queryFound := True
(i, j) := getInterval(0, n,P [c])
while (i, j) �= ⊥ and c < m and queryFound = True

if i �= j then
� := getlcp(i, j)
min := min{�,m}
queryFound := S[suftab[i] + c..suftab[i] + min − 1] = P [c..min − 1]
c := min
(i, j) := getInterval(i, j,P [c])

else queryFound := S[suftab[i] + c..suftab[i] +m− 1] = P [c..m− 1]
if queryFound then

Report(i, j) /* the P -interval */
else print “pattern P not found”

The algorithm starts by determining withgetInterval(0, n,P [0]) the lcp or singleton
interval[i..j ] whose suffixes start with the characterP [0]. If [i..j ] is a singleton interval
then patternP occurs inS if and only if S[suftab[i]..suftab[i] +m− 1] = P . Otherwise,
if [i..j ] is an lcp-interval, then we determine its lcp-value� by the functiongetlcp; see
end of Section 6.2. Letω = S[suftab[i]..suftab[i] + �− 1] be the longest common prefi
of the suffixesSsuftab[i], Ssuftab[i+1], . . . , Ssuftab[j ]. If � � m, then patternP occurs inS if
and only ifω[0..m− 1] = P . Otherwise, if� < m, then we test whetherω = P [0..�− 1].
If not, thenP does not occur inS. If so, we search withgetInterval(i, j,P [�]) for the
�′- or singleton interval[i ′..j ′] whose suffixes start with the prefixP [0..�] (note that the
suffixes of [i ′..j ′] haveP [0..� − 1] as a common prefix because[i ′..j ′] is a subinter-
val of [i..j ]). If [i ′..j ′] is a singleton interval, then patternP occurs inS if and only if
S[suftab[i ′] + �..suftab[i ′] +m− 1] = P [�..m− 1]. Otherwise, if[i ′..j ′] is an�′-interval,
let ω′ = S[suftab[i ′]..suftab[i ′] + �′ − 1] be the longest common prefix of the suffix
Ssuftab[i′], Ssuftab[i′+1], . . . , Ssuftab[j ′]. If �′ � m, then patternP occurs inS if and only if
ω′[�..m− 1] = P [�..m− 1] (or equivalently,ω[0..m− 1] = P ). Otherwise, if�′ <m, then
we test whetherω[�..�′ − 1] = P [�..�′ − 1]. If not, thenP does not occur inS. If so, we
search withgetInterval(i ′, j ′,P [�′]) for the next interval, and so on.

Enumerative queries can be answered in optimal O(m + z) time as follows. Given a
patternP of lengthm, we search for theP -interval [l..r] using the preceding algorithm
This takes O(m) time. Then we can report the start position of every occurrence ofP in
S by enumeratingsuftab[l], . . . , suftab[r]. In other words, ifP occursz times inS, then
reporting the start position of every occurrence requires O(z) time in addition.

6.4. Finding all shortest unique substrings

As a second application of a top-down traversal of the lcp-interval tree, we will br
describe how to find all shortest unique substrings in optimal time. The problem is re
when designing primers for DNA sequences.
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problem is to find all shortest unique substrings ofS. For example,ca is the only shortes
unique substring inacac. It is easy to verify that a unique substring inS corresponds to
a singleton interval. In particular, ifu is a shortest unique substring ofS, then there is
an�-interval [i..j ] and a singleton child interval[k..k] of [i..j ] such thatu is a prefix of
length� + 1 of Ssuftab[k] andu[�] �= $. As a consequence, we solve the shortest un
substring problem by enumerating lcp-intervals. Since we are interested in lcp-int
of minimal lcp-value, we perform a breadth-first traversal of the lcp-interval tree, us
queue. Of course, we do not construct the lcp-interval tree. Instead we use the en
suffix array to generate the lcp-intervals. Besides the queue, we maintain a setM of unique
substrings, represented by their length and their start position inS. The lengthq of the
unique substrings inM is minimal over all unique substrings detected so far. Initially,M

is empty andq = ∞.
Suppose that[i..j ] is the current�-interval to be processed during the traversal.

compute all child intervals of[i..j ] according to Algorithm 6.7. For each singleton ch
interval [k..k] of [i..j ] with Ssuftab[k][�] �= $, the prefix ofSsuftab[k] of length� + 1 is a
unique substring ofS. If M is empty orq > �+1, thenM is updated by{(�+1, suftab[k])}
andq is assigned�+ 1. IfM is not empty andq = �+ 1, then we add(�+ 1, suftab[k]) to
M. Otherwise,M andq are left unchanged.

Each child interval[i ′..j ′] of [i..j ] with lcp-value�′ is added to the back of the queu
whenever�′ + 1 � q . Then we proceed with the next lcp-interval at the front of the qu
as described above, until the queue is empty.

Computing the child intervals of an lcp-interval takes constant time. Verifying
uniqueness and maintaining the queue as well as the setM takes time proportional to
the number of processed lcp-intervals. In the worst case, this is O(n). Thus the algorithm
runs in O(n) time. However, in practice only a small number of lcp-intervals is proces
see Section 9.

7. Incorporating suffix links

In this section, we incorporate suffix links into our framework. As an application
will show how to efficiently compute matching statistics by a traversal of the lcp-inte
tree that uses suffix links. Let us first recall the definition of suffix links. In the follow
we denote a nodeu in the suffix tree byω if and only if the concatenation of the edge-lab
on the path from the root tou spells out the stringω. It is a property of suffix trees that fo
any internal nodeaω, there is also an internal nodeω. A pointer fromaω to ω is called a
suffix link.

Recall that the inverse suffix arraysuftab−1 is a table such thatsuftab−1[suftab[q]] = q
for every 0� q � n; see Fig. 5.

Definition 7.1. Let Ssuftab[i] = aω. If index j , 0� j < n, satisfiesSsuftab[j ] = ω, then we
denotej by link[i] and call it the suffix link (index) ofi.

Lemma 7.2. If suftab[i]< n, then link[i] = suftab−1[suftab[i] + 1].
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Fig. 5. Suffix array of the stringS = acaaacatat enhanced with the lcp-table, the child-table, and the suffix
table. The inverse suffix array is used only in the construction of the suffix link table.

Proof. Let Ssuftab[i] = aω. Sinceω = Ssuftab[i]+1, link[i] must satisfysuftab[link[i]] =
suftab[i] + 1. This immediately proves the lemma.✷

Under a different name, the functionlink appeared already in [14].

Definition 7.3. Given �-interval [i..j ], the smallest lcp-interval[l..r] satisfying l �
link[i]< link[j ] � r is called thesuffix link interval of [i..j ].

Suppose that the�-interval[i..j ] corresponds to an internal nodeaω in the suffix tree.
Then there is a suffix link from nodeaω to the internal nodeω. The following lemma state
that nodeω corresponds to the suffix link interval of[i..j ].

Lemma 7.4. Given the aω-interval �-[i..j ], its suffix link interval is the ω-interval, which
has lcp-value �− 1.

Proof. Let [l..r] be the suffix link interval of[i..j ]. Because the lcp-interval[i..j ] is the
aω-interval,aω is the longest common prefix ofSsuftab[i], . . . , Ssuftab[j ]. Consequently,ω
is the longest common prefix ofSsuftab[link[i]], . . . , Ssuftab[link[j ]]. It follows that ω is the
longest common prefix ofSsuftab[l], . . . , Ssuftab[r], because[l..r] is the smallest lcp-interva
satisfyingl � link[i]< link[j ] � r. That is,[l..r] is theω-interval and thus it has lcp-valu
�− 1. ✷
7.1. Construction of the suffix link table

In order to incorporate suffix links into the enhanced suffix array, we proceed as fo
In a preprocessing step, we compute for every�-interval[i..j ] its suffix link interval[l..r]
and store the left and right boundariesl andr at the first�-index of[i..j ]. The correspond
ing table, indexed from 0 ton is denoted bysuflink; see Fig. 5 for an example. Note th
the lcp-value of[l..r] need not be stored because it is known to be�− 1. Thus, the spac
requirement forsuflink is 2 · 4n bytes in the worst case. To compute the suffix link ta
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lcp-value encountered, we hold a list of intervals of that lcp-value, which is initially em
Whenever an�-interval is computed, it is appended to the list of�-intervals; this list is
called�-list in what follows. In the example of Fig. 2, this gives

0-list: [0..10]
1-list: [0..5], [8..9]
2-list: [0..1], [4..5], [6..7]
3-list: [2..3]

Note that the�-lists are automatically sorted in increasing order of the left-bounda
the intervals and that the total number of�-intervals in the�-lists is at mostn. For every
lcp-value� > 0 and every�-interval [i..j ] in the �-list, we proceed as follows. We firs
computelink[i] according to Lemma 7.2. Then, by a binary search in the(�− 1)-list, we
search in O(logn) time for the interval[l..r] such thatl is the largest left boundary of a
(�−1)-intervals withl � link[i]. This interval is the suffix link interval of[i..j ]. Finally, we
determine in constant time the first�-index of[i..j ] according to Lemma 6.6 and storel and
r there. Because there are less thann lcp-intervals and for each interval the binary sea
takes O(logn) time, the preprocessing phase requires O(n logn) time. Tablesuftab−1 and
the�-lists require O(n) space, but they are only used in the preprocessing phase an
be deleted after the computation of the suffix link table.

Theoretically, it is possible to compute the suffix link intervals in time O(n) via the
construction of the suffix tree. But it is also possible to give a linear time algorithm wit
intermediate construction of the suffix tree. We achieve this by avoiding the binary s
over the�-lists and reducing the problem of computing the suffix link intervals to
problem of answering range minimum queries. In contrast to the previous O(n logn)-time
algorithm, we store the boundariesi andj of an�-interval [i, j ] at every �-index (again,
these values can be deleted once the suffix link tablesuflink is created).

Next, we will show that it is possible to compute the suffix link interval[l..r] of an
�-interval[i, j ] in constant time. To this end, we need the following lemma:

Lemma 7.5. Let [i, j ] be an �-interval [i, j ] and let [l..r] be its suffix link interval. Since
there is an �-index q with i + 1 � q � j , there is also an index k such that k is an (�− 1)-
index of [l..r] and link[i] + 1 � k � link[j ].

Proof. Follows from the proof of Lemma 7.4.✷
Becausel � link[i]+1� link[j ] � r and�−1 is the length of the longest common pre

of link[i] andlink[j ], the minimum value of the lcp-table in the range[link[i]+1..link[j ]] is
�−1. Therefore, one can locate an(�−1)-indexk of [l..r] with link[i]+1� k � link[j ] by
answering the range minimum query in the range[link[i]+1..link[j ]]. The range minimum
query is defined as follows.

Definition 7.6. LetL be an integer-array of sizen whose elements are in the range[0, n−
1]. Let 0� i < j � n− 1. Therange minimum query RMQ(i, j) asks for an indexk such
thati � k � j andL[k] = min{L[q] | i � q � j }.
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An RMQ can be answered in constant time provided that the arrayL is appropriately
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preprocessed. Fortunately, the preprocessing ofL requires only linear time and spac
see [4,21,31].

For the computation of suffix link intervals, one solvesRMQs for L = lcptab. As in
the previous algorithm, the lcp-interval tree is traversed in breadth-first order. Thu
�-intervals are processed in ascending order of their lcp-value. Suppose�-interval [i..j ]
is to be processed and all intervals of lcp-value�− 1 have already been processed. Fi
we store the�-interval boundariesi andj at every�-index of [i..j ]. Second, we comput
link[i] andlink[j ] according to Lemma 7.2, and evaluatek = RMQ(link[i]+ 1, link[j ]). k is
an(�−1)-index of the suffix link interval of[i..j ], and thus we can look up the boundar
l andr of this suffix link interval at indexk. Finally, we storel andr in the suffix link table
at the first�-index of [i..j ]. Because every step in this procedure takes constant tim
space, the overall complexity of computing the suffix link intervals is O(n).

The following subsection describes the application of suffix link intervals to com
matching statistics.

7.2. Computing matching statistics

Matching statistics were introduced in [7] to solve the approximate string matc
problem in sublinear expected time.

Let T be a string of lengthm. A matching statistics of T w.r.t. S is a table of pairs
(lj ,pj ), where 0� j �m− 1, such that the following holds:

1. T [j..j + lj − 1] is the longest prefix ofT [j..m− 1] which occurs as a substring ofS.
2. T [j..j + lj − 1] = S[pj ..pj + lj − 1].

If T [j..j+ lj −1] occurs more than once as a substring ofS, then there are several choic
for pj . Here it is merely required that one suchpj is determined. LetS = cacaccc and
T = caacacacca. Then the following table shows a matching-statistics ofT w.r.t.S:

j 0 1 2 3 4 5 6 7 8 9

(lj ,pj ) (2,0) (1,1) (4,1) (6,0) (5,1) (4,2) (3,3) (2,4) (2,2) (1,3)

Chang and Lawler [7] provided an algorithm to compute matching statistic
O(n+m) time. This algorithm traverses the suffix tree ofS in a single left-to-right scan
of T utilizing suffix links. In each step of the algorithm, the suffixT [j..m − 1] of T
is matched against the suffix tree until a mismatch occurs or all characters inT have
been completely matched. This determines a location in the suffix tree and delive
length lj of the longest matching prefix ofT [j..m − 1]. pj is the starting position o
a suffix of S$ in the subtree below the location. Iflj > 0, thenlj+1 � lj − 1, because
T [j + 1..j + lj − 1] = S[pj + 1..pj + lj − 1]. Using suffix links one determines the loc
tion for T [j + 1..j + lj − 1] in the suffix tree in constant amortized time and continue
matchT [j + lj ..m] against the tree.

Using the methods described in previous sections, we can adapt this algorithm
hanced suffix arrays. Given the enhanced suffix array forS with tablessuftab, lcptab,
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childtab, andsuflink, a location in the enhanced suffix array is a triple ([i..j ], q, [l..r])
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where[i..j ] is an�-interval, and eitherq = � and [i..j ] = [l..r] or the following holds:
[l..r] is a child interval of[i..j ] and either[l..r] is anm-interval and� < q <m or [l..r] is a
singleton interval and� < q � n−suftab[l]. Each location([i..j ], q, [l..r]) in the enhanced
suffix array corresponds to exactly one substring ofS, namelyS[suftab[l]..suftab[l] +
q − 1].

Algorithm 6.8 can easily be modified such that

• it greedily matches a string character by character until there is no child interv
the current character or all characters have been matched, and

• it starts matching at any location and delivers a location as a result.

The resulting algorithm is calledgreedymatch. To compute the matching statistics,greedy-
match is applied to each suffixT [j..m − 1] of T , from longest to shortest. In eac
step,greedymatch determines a location([i..j ], q, [l..r]) corresponding to the longe
prefix of T [j..m − 1] occurring as a substring ofS, and we assignlj := q andpj :=
suftab[z] for somez ∈ [l, r]. If j = 0 or lj = 0, then the matching process starts at
cation([0..n],0, [0..n]). Otherwise, we look up the suffix link interval[i ′..j ′] of [i..j ] in
suflink[min�Indices(i, j)]. If q = � and[i..j ] = [l..r], then we proceed with[i ′..j ′]. Oth-
erwise, we first have to “rescan”S[suftab[l] + �..suftab[l] + q − 1] from location[i ′..j ′].
This can easily be achieved in constant time per visited lcp-interval by a modificati
greedymatch. In this way, we obtain an algorithm that determines the matching statist
O(n+m) time.

8. Implementation details

In this section, we present implementation details that considerably reduce the
requirement. Our experiments show that this entails no loss of performance, alb
worst case time complexities of the algorithms may be affected.

8.1. The lcp-table

It has already been mentioned that the lcp-table requires 4n bytes in the worst case
In practice, however, the lcp-table can be implemented in little more thann bytes. More
precisely, we store most of the values of tablelcptab in a table lcptab1 using n bytes.
That is, for anyi ∈ [1, n], lcptab1[i] = max{255, lcptab[i]}. There are usually only few
entries inlcptab that are larger than or equal to� 255; see Section 9. To access th
efficiently, we store them in an extra tablellvtab. This contains all pairs(i, lcptab[i]) such
that lcptab[i] � 255, ordered by the first component. Each entry inllvtab requires 8 bytes
If lcptab1[i] = 255, then the correct value oflcptab is found inllvtab. If we scan the value
in lcptab1 in consecutive order and find a value 255, then we access the correct va
lcptab in the next entry of tablellvtab. If we access the values inlcptab1 in arbitrary order
and find a value 255 at indexi, then we perform a binary search inllvtab usingi as the key.
This deliverslcptab[i] in O(log2 |llvtab|) time.
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As the lcp-table, the child-table requires 4n bytes but in practice it can be stored
n bytes without loss of performance. To achieve this goal, we store relative indic
childtab. For example, ifj = childtab[i].next�Index, then we storej − i. The relative in-
dices are almost always smaller than 255. Hence we use only one byte for storing
of tablechildtab. The values� 255 are not stored. Instead, if we encounter the value 25
childtab, then we use a function that is equivalent togetInterval, except that it determine
a child interval by a binary search, similar to the algorithm of [29, p. 937]. Consequ
instead of 4 bytes per entry of the child-table, only 1 byte is needed. The overall
consumption for tablessuftab, lcptab, andchildtab is thus only 6n bytes.

For a given parameterd , we additionally use an extra bucket tablebcktabd . This table
stores for each stringw of lengthd the smallest integeri, such thatSsuftab[i] is a prefix
of w. In this way, we can answer small queries of lengthm� d in time O(m). For larger
queries, this bucket table allows us to locate the interval containing thed-character prefix
P [0..d − 1] of the queryP in constant time. Then our algorithm, which searches for
patternP in S, starts with this interval instead of the interval[0..n]. d is chosen to be th
maximal value such that tablebcktabd never requires more thann bytes. The advantag
of this hybrid method is that only a small part of the suffix array is actually acce
Moreover, we only rarely access the values 255 inchildtab.

8.3. The suffix link table

In the algorithm of Section 7.2 we compute for thed-length prefixw of each suffix of
length at leastd , a unique integer codeϕ(w) in the range[0, |Σ|d−1]. These integer code
can be computed in O(m) additional time, and they are used to access tablebcktabd . Now
suppose we want to compute the suffix link interval of some�-interval[i..j ]. If �� d + 1,
then this can be done in constant time by some integer arithmetic and looking up
priate values in tablebcktabd . Now let � > d + 1. In this case, we access tablesuflink
as described at the beginning of Section 7.1. However, insuftab we have stored the le
boundary value we are looking for relative tobcktabd [ϕ(w)]. This relative value is usu
ally very small, and therefore we use 1 byte to store it. Similarly, the right boundary
is stored relative to the left boundary value, which also allows to reduce the corres
ing space to 1 byte. Altogether, the suffix link tablesuflink requires only 2n bytes in our
implementation.

9. Experimental results

For our experiments, we collected a set of files of different sizes and types:

E. coli: The complete genome of the bacteriumEscherichia coli, strain K12. This is a
DNA sequence of length 4,639,221. The alphabet size is 4.

Yeast: The complete genome of the baker’s yeastSaccharomyces cerevisiae, i.e., a DNA
sequence of length 12,156,300. The alphabet size is 4.
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Hs21: The complete sequence of chromosome 21 of homo sapiens. The length is

se (re-
.
e is

bac-

for all
e. The
]. This
ees (see
x tree.
anced

giga-
ytes of

ximal
with the

om-
ist

ribed
33,917,895. The alphabet size is 4.
Swissprot: The complete collection of protein sequences from the Swissprot databa

lease 38). The total size of all sequences is 29,165,964. The alphabet size is 20
Shaks: A collection of the complete works of William Shakespeare. The total siz

5,582,655 bytes. The alphabet size is 92.

In addition we collected four different pairs of similar genomes:

Streptococuss 2: The complete genomes of two strains ofStreptococcus pneumoniae
(length 2,160,837 and 2,038,615).

E. coli 2: E. coli (see above) and the complete genome of a different strain of this
terium (E. coli O157:H7, length 5,528,445).

Yeast 2: Yeast(see above) and the complete genome of a different kind of yeast (S. pombe,
length 12,534,386).

Human 2: Hs21(see above) and chromosome 22 of homo sapiens (length 33,821,705).

Prior to all computations described below, we constructed the enhanced suffix array
input sequences. Each of the tables comprising the index is stored on a different fil
construction was done by a program that is based on the suffix sorting algorithm of [5
program uses about 50% less space than the best programs constructing suffix tr
below). The enhanced suffix array is constructed in about the same time as the suffi
We do not give more details here, since we want to focus on the application of enh
suffix arrays.

The running times reported here are for a SUN-Sparc computer equipped with 32
bytes RAM and a 950 Mhz CPU. For our tests, we only needed at most 3165 megab
memory; see Table 3.

9.1. Computing repeats and maximal unique matches

In our first experiment we ran different programs computing repeats and ma
matches. The name of a program based on enhanced suffix arrays always begins
prefixesa.

• REPuter andesarep implement the algorithm of Gusfield (see Section 5.1) to c
pute maximal repeated pairs.REPuter is based on suffix trees (improved linked l
representation of [25]).

• esasupermax computes supermaximal repeats. It implements the algorithm desc
in Section 3.3.

• unique-match andesamum computeMUMs.unique-match is part of the original distri-
bution ofMUMmer (version 1.0) [8]. It is based on suffix trees.unique-match as well
asREPuter construct the suffix tree in main memory (using O(n) time).esamum uses
the algorithm described at the end of Section 3.4.
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Running times (in seconds) and space requirement (in megabytes) for computing maximal repeated p
supermaximal repeats. The column titled #reps gives the number of repeats of length� �. The space requiremen
is independent of�, hence it is given in a separate table

� Running time forE. coli (n= 4,639,221) in sec. Running time forYeast (n= 12,156,300) in sec.

maximal repeated pairs esasupermax maximal repeated pairs esasupermax

#reps REPuter esarep #reps #reps REPuter esarep #reps

20 7799 3.28 0.79 899 0.16 175455 9.71 2.23 6432 0

23 5206 3.28 0.78 642 0.15 84115 9.63 2.16 4069 0

27 3569 3.31 0.79 500 0.15 41400 9.72 2.14 2813 0

30 2730 3.30 0.80 456 0.15 32199 9.69 2.14 2374 0

40 840 3.29 0.79 281 0.15 20767 9.57 2.13 1674 0

50 607 3.29 0.79 196 0.14 16209 9.64 2.12 1354 0

� Running time for Hs21 (n= 33,917,895) in sec. Space requirement in megabytes

maximal repeated pairs esasupermax REPuter esarep esasupermax

#reps REPuter esarep #reps E. coli 61 31 31

20 40193973 54.63 24.00 188695 1.50 Yeast 160 83 83

23 19075117 51.78 14.62 138523 1.44 Hs21 446 227 227

27 8529120 47.97 9.88 98346 1.39

30 4787086 46.54 8.15 77695 1.34

40 732822 45.06 6.21 35719 1.23

50 149482 44.33 5.85 16392 1.19

Table 3
Running times (in seconds) and space consumption (in megabytes) for computingMUMs of length� 20. The
column titled #MUMs gives the number ofMUMs. The time given forunique-match does not include suffix tre
construction.esamum reads the enhanced suffix array from different files via memory mapping

Genome pair Total size #MUMs unique-match esamum

time space time space

Streptococuss 2 4,199,453 6613 9.0 196 0.33 3
E. coli 2 10,107,957 10817 30.7 472 0.69 6
Yeast 2 24,690,687 2536 118.2 1154 0.66 1
Human 2 67,739,601 217014 430.1 3165 2.34 3

All programs based on suffix arrays use memory mapping to access the enhance
array from the different files. Of course, a file is mapped into main memory only i
table it stores is required for the particular algorithm. We applied the three program
the detection of repeats toE. coli, Yeast, andHs21. Additionally, we appliedunique-match
andesamum to the pairs of genomes listed above.

The results of applying the different programs to the different data sets are sho
Tables 2 and 3. For a fair comparison, we report the running time ofREPuter and of
unique-match without suffix tree construction.

The running time ofesasupermax is almost independent of the minimal length of t
supermaximal repeats computed. Since the algorithm is so simple, the main part
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running time is the input and output. The strmat-package of [22] implements a more com-
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plicated algorithm than ours for the same task. For example, when applied toE. coli, it
requires 19 sec. (without suffix tree construction) to compute all 944,546 superma
repeats of length at least 2. For this taskesasupermax requires 0.82 seconds due to t
large size of the output.

The comparison ofesarep andREPuter underlines the advantages of the enhanced s
array over the suffix tree.esarep used about halve of the space ofREPuter. If there are
many repeats, then the computation is dominated by the postprocessing of the repea
computing E-values), which is identical in both programs. Henceesarep is only 2–3 times
faster thanREPuter in these cases. In general,esarep is 4–5 times faster thanREPuter.
This is due to the improved cache behavior achieved by the linear scanning of the
suftab, lcptab, andbwttab.

The running times and space results shown in Table 3 reveal thatesamum is much faster
thanunique-match, using at most 15% of the space.

All in all, the experiments show that our programs based on enhanced suffix arra
fine the state-of-the-art in computing different kinds of repeats and maximal matche
programsesarep, esasupermax, andesamum are available as part of theVmatch-software
package, seehttp://www.vmatch.de.

9.2. Searching for patterns

For our second experiment, we ran three different programs for answering enume
queries:

• streematch is based on the improved linked list representation of suffix trees, a
scribed in [25].

• mamy is based on suffix arrays and uses the algorithm of [29] with additional bu
to speedup the searches. We used the original program code developed by Gene

• esamatch is based on enhanced suffix arrays (tablessuftab, lcptab, childtab) and uses
Algorithm 6.8.

The programsstreematch andmamy first construct the index in main memory and th
perform pattern searches.esamatch accesses the enhanced suffix array from the diffe
files via memory mapping.

Table 4 shows the running times in seconds for the different programs when s
ing for one million patterns. This seems to be a large number of queries to be ans
However, at least in the field of genomics, it is relevant; see [15]. The shortest ru
times in Table 4 are shown in bold face. The time for index construction is not inclu
Patterns were generated according to the following strategy: For each input strinS of
lengthn we randomly sampledp = 1,000,000 substringss1, s2, . . . , sp of different lengths
from S. The lengths were evenly distributed over different intervals[minpl,maxpl], where
(minpl,maxpl) ∈ {(20,30), (30,40), (40,50)}. For i ∈ [1,p], the programs were called
search for patternpi , wherepi = si , if i is even, andpi is the reverse ofsi , if i is odd.
Reversing a stringsi simulates the case that a pattern search is often unsuccessful.

http://www.vmatch.de


82 M.I. Abouelhoda et al. / Journal of Discrete Algorithms 2 (2004) 53–86

Table 4
earching
hed

et
s,

y of

Sec-

onds. It
nding
each
3 lcp-
solu-
ethod

to the

gram
show a
Running times (in seconds) and space requirement (in megabytes) for one million enumeration queries s
for exact patterns in the input strings.minpl andmaxpl are the minimal and maximal size of the patterns searc
for

File Running time forminpl = 20,maxpl = 30 Running time forminpl = 30,maxpl = 40

streemach mamy esamatch streemach mamy esamatch

E. coli 9.47 5.56 4.48 9.63 5.70 4.69
Yeast 12.42 8.26 5.37 12.56 8.46 5.80
Hs21 20.15 12.50 7.23 20.43 12.69 7.30
Swissprot 41.78 9.55 6.22 40.80 10.09 6.25
Shaks 15.61 4.29 72.44 15.78 4.37 66.60

Running time forminpl = 40,maxpl = 50 Space requirement

streemach mamy esamatch streemach mamy esamatch

E. coli 9.86 5.87 4.85 56 40 47
Yeast 13.34 8.63 5.74 146 106 120
Hs21 21.22 12.88 7.61 407 296 327
Swissprot 42.96 9.83 6.39 320 288 281
Shaks 15.88 4.49 67.16 52 48 60

As expected, the running times ofstreematch and esamatch depend on the alphab
size. This is not true formamy. For Shaks, mamy is much faster than the other program
which we explain by the large alphabet. For the other files,esamatch is always more than
twice as fast asstreematch and slightly faster thanmamy. All in all, this experiment shows
that for small alphabetsesamatch can compete with the other programs and is not onl
theoretical interest.

9.3. Searching for minimal unique substrings

For our third experiment, we implemented the breadth first traversal algorithm of
tion 6.4 to find shortest unique substrings. We applied it toE. coli andYeast. ForE. coli our
program computed three shortest unique substrings, each of length 7, in 0.09 sec
processed 11,392 lcp-intervals (0.38% of all 2,978,098 lcp-intervals in the correspo
lcp-interval tree). ForYeast our program computed 383 shortest unique substrings,
of length 9, in 0.75 seconds. It processed 92,863 lcp-intervals (1.2% of all 7,904,70
intervals in the corresponding lcp-interval tree). To demonstrate the efficiency of our
tion to the shortest unique substring problem, we implemented a straightforward m
to solve the same problem by enumerating all lcp-intervals. ForE. coli, the straightforward
method delivers the result in 0.79 seconds, while it takes 3.47 seconds forYeast.

9.4. Computing matching statistics

For our final experiment, we applied two programs computing matching statistics
pairs of genomes listed at the beginning of this section (Table 5). The programstreems
is based on the improved linked list implementation of suffix trees, while our pro
esams uses the enhanced suffix arrays as described in Section 7.2. The experiments
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Running times (in seconds) and space consumption (in megabytes) for computing matching statistics. T
given forstreems does not include suffix tree construction.esams reads the enhanced suffix array from differe
files via memory mapping. The space requirement for the matching statistics is not included

Genome pair Total length streems esams

time space time space

Streptococuss 2 4,199,453 4.1 30 11.1 2
E. coli 2 10,107,957 13.3 65 18.9 4
Yeast 2 24,690,687 41.0 170 43.4 10
Human 2 67,739,601 169.2 472 314.0 29

trade-off between time and space consumption: Whileesams uses 30–40% less space th
streems, the latter program is up to three times faster. We explain this by the slow lo
of the suffix link interval in the enhanced suffix array. It remains an open problem to
an alternative way to locate suffix link intervals more efficiently.

10. Conclusions and related work

The contribution of this article is twofold: First, it has been shown that every algor
that uses a suffix tree as data structure can systematically be replaced with an algorit
uses an enhanced suffix array and solves the same problem in thesame time complexity.
This shows that our new approach to solving string processing problems is interestin
a theoretical point of view. Second, we have shown that the space requirement in larg
applications such as the comparison of whole genomes can drastically be reduced b
enhanced suffix arrays instead of suffix trees. This makes the algorithms very valu
practice.

All the algorithms presented in this article and others such as the computation of a
dem repeats of a string (see [1]) have been carefully implemented and the space co
tion has been reduced to a few bytes per input character. The precise space cons
depends on the application; see Table 6 for an overview. Although the practical impl
tation does not always achieve the worst case time complexity that is possible withou
reduction, we did not observe any loss of performance. In fact, our experiments sho
the programs can handle large data sets very efficiently. Some of the algorithms de
here are implemented in the software toolVmatch; seehttp://www.vmatch.de.

We would like to mention that the very recent results concerningRMQs [4,21,31] (see
Section 7.1) can be used to obtain a different method to simulate top-down traver
a suffix tree, i.e., without the construction of thechildtab. In order to compute the chil
intervals of an�-interval[i..j ], it suffices to compute the�-indices of[i..j ]; see Lemma 6.1
By Definition 3.1, the�-indicesi1< i2< · · ·< ik of [i..j ] are the indices with minimum
lcp-value in the range[i+1..j ]. Suppose that everyRMQ returns the first indexk such that
lcptab[k] is minimum in the given range (according to [21], one suchRMQ can be answere
in constant time). Then the�-indices of[i..j ] can be found by successively computingi1 :=
RMQ(i + 1, j), i2 := RMQ(i1 + 1, j), . . . , ik := RMQ(ik−1 + 1, j), until RMQ(ik + 1, j)

http://www.vmatch.de
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Summary of the tables required for the applications mentioned in the paper. The programesamum, for
example, requires an enhanced suffix array consisting of the tablessuftab, lcptab, andbwttab

Application Enhanced suffix array

suftab lcptab childtab suflink S bwttab
4n bytes n bytes n bytes 2n bytes n log |Σ | bits n log |Σ | bits

esasupermax
√ √ √

esamum
√ √ √

esarep
√ √ √

Ziv–Lempel
√ √

esamatch
√ √ √ √

shortest unique sub.
√ √ √

esams
√ √ √ √ √

returns a valueq such thatlcptab[q] �= �. Future work will show whether this approach
also of practical interest.

Clearly, it would be desirable to further reduce the space requirement of the suf
ray. Recently, interesting results in this direction have been obtained. The most n
ones are the compressed suffix array introduced by Grossi and Vitter [14] and the so
opportunistic data structure devised by Ferragina and Manzini [10]. These data stru
reduce the space consumption considerably. Because the papers cited above sole
on pattern matching, we can only compare their pattern matching results with ours
to the compression, the above-mentioned approaches do not allow to answer enum
queries in O(m + z) time; instead they require O(m + z logε n) time, whereε > 0 is a
constant.3 Worse, experimental results [11] show that the gain in space reduction h
be paid by considerably slower pattern matching; this is true even for decision qu
According to [11], the opportunistic index is 8–13 times more space efficient than th
fix array but string matching based on the opportunistic index is 16–35 times slowe
their implementation based on the suffix array. So there is a trade-off between tim
space consumption. In contrast to that, suffix arrays can be queried at speeds com
to suffix trees, while being much more space efficient than these. Let us briefly co
our retrieval times with those of an implementation of the opportunistic data structure
According to [11], it takes 7.6 seconds to answer 1000 enumerative queries search
random patterns of length between 8 and 15 inE. coli (on a Pentium 600 Mhz). By con
trast, our programesamatch requires only 0.003 seconds for the same task (on a Pen
933 Mhz). Under the (conservative) assumption that a 933 MHz processor is 1.5
faster than a 600 Mhz processor, a comparison of the preceding running times sho
our program is more than 1650 times faster than that of [11]. However, a closer look
experimental results of [11] reveals some inconsistencies with our results. For ex
[11] report that their program based on suffix arrays requires 0.6 seconds to answe
enumerative queries searching for random patterns of length between 8 and 15 inE. coli

3 Ferragina and Manzini [12] also proposed a compressed data structure that removes the logε n factor from
the search time at the cost of adding a logε n factor to the space. However, no experiments with this data stru
are reported.



M.I. Abouelhoda et al. / Journal of Discrete Algorithms 2 (2004) 53–86 85

(on a Pentium 600 Mhz). By contrast,mamy takes only 0.02 seconds for the same task. It is
ifferent
ntly

ressed

sed on
ic

for
ted by
.

nalysis,
452,

: Proc.
puter

ger-

nfor-

ympo-

4, Dig-

orith-

whole

nt and

um on

mpo-

ento di

rakes,
ewood
not clear where these differences come from. The authors of [11] may have used a d
algorithm thanmamy, or they may have implemented the same algorithm less efficie
than Gene Myers did.

More recently, Hon and Sadakane [18] and Sadakane [31] showed that comp
suffix arrays can be used to solve string processing tasks like computing allMUMs of
two sequences. However, it remains an open problem to develop a software tool ba
compressed suffix arrays that can compete withMUMmer or ours. Moreover, a systemat
approach like ours has not yet been developed for compressed suffix arrays.
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