
Optimal exact string matching

based on suffix arrays

Mohamed Ibrahim Abouelhoda, Enno Ohlebusch, and Stefan Kurtz

Faculty of Technology, University of Bielefeld, P.O. Box 10 01 31, 33501 Bielefeld,
Germany. Email: {mibrahim,enno,kurtz}@TechFak.Uni-Bielefeld.DE

In Proceedings of the Ninth International Symposium

on String Processing and Information Retrieval,

Springer-Verlag, Lecture Notes in Computer Science, 2002

Abstract. Using the suffix tree of a string S, decision queries of the type
“Is P a substring of S?” can be answered in O(|P |) time and enumeration
queries of the type “Where are all z occurrences of P in S?” can be
answered in O(|P |+z) time, totally independent of the size of S. However,
in large scale applications as genome analysis, the space requirements of
the suffix tree are a severe drawback. The suffix array is a more space
economical index structure. Using it and an additional table, Manber and
Myers (1993) showed that decision queries and enumeration queries can
be answered in O(|P |+log |S|) and O(|P |+log |S|+z) time, respectively,
but no optimal time algorithms are known. In this paper, we show how
to achieve the optimal O(|P |) and O(|P | + z) time bounds for the suffix
array. Our approach is not confined to exact pattern matching. In fact, it
can be used to efficiently solve all problems that are usually solved by a
top-down traversal of the suffix tree. Experiments show that our method
is not only of theoretical interest but also of practical relevance.

1 Introduction

The suffix tree of a sequence S can be computed and stored in O(n) time and
space [13], where n = |S|. Once constructed, it allows one to answer queries of
the type “Is P a substring of S?” in O(m) time, where m = |P |. Furthermore, all
z occurrences of a pattern P can be found in O(m+z) time, totally independent
of the size of S. Moreover, typical string processing problems like searching for
all repeats in S can be efficiently solved by a bottom-up traversal of the suffix
tree of S. These properties are most convenient in a “myriad” of situations [2],
and Gusfield devotes about 70 pages of his book [8] to applications of suffix trees.

While suffix trees play a prominent role in algorithmics, they are not as
widespread in actual implementations of software tools as one should expect.
There are two major reasons for this: (i) Although being asymptotically linear,
the space consumption of a suffix tree is quite large; even the recently improved
implementations (see, e.g., [10]) of linear time constructions still require 20n
bytes in the worst case. (ii) In most applications, the suffix tree suffers from a
poor locality of memory reference, which causes a significant loss of efficiency on
cached processor architectures. On the other hand, the suffix array (introduced in
[12] and in [6] under the name PAT array) is a more space efficient data structure
than the suffix tree. It requires only 4n bytes in its basic form. However, at first
glance, it seems that the suffix array has two disadvantages over the suffix tree:

(1) The direct construction of the suffix array takes O(n · log n) time.

(2) It is not clear that (and how) every algorithm using a suffix tree can be
replaced with an algorithm based on a suffix array solving the same problem
in the same time complexity. For example, using only the basic suffix array,
it takes O(m · log n) time in the worst case to answer decision queries.

Let us briefly comment on the two seemingly drawbacks:
(1) The O(n · log n) time bound for the direct construction of the suffix array

is not a real drawback, neither from a theoretical nor from a practical point of
view. The suffix array of S can be constructed in O(n) time in the worst case by
first constructing the suffix tree of S; see [8]. However, in practice the improved
O(n·log n) time algorithm of [11] to directly construct the suffix array is reported
to be more efficient than building it indirectly in O(n) time via the suffix tree.

(2) We strongly believe that every algorithm using a suffix tree can be re-
placed with an equivalent algorithm based on a suffix array and additional in-
formation. As an example. let us look at the exact pattern matching problem.
Using an additional table, Manber and Myers [12] showed that decision queries
can be answered in O(m+log n) time in the worst case. However, no O(m) time
algorithm based on the suffix array was known for this task. In this paper, we
will show how decision queries can be answered in optimal O(m) time and how
to find all z occurrences of a pattern P in optimal O(m+z) time. This new result
is achieved by using the basic suffix array enhanced with two additional tables;
each can be computed in linear time and requires only 4n bytes. In practice each
of these tables can even be stored in n bytes without loss of performance. Our
new approach is not confined to exact pattern matching. In general, we can sim-
ulate any top-down traversal of the suffix tree by means of the enhanced suffix
array. Thus, our method can efficiently solve all problems that are usually solved
by a top-down traversal of the suffix tree. By taking the approach of Kasai et
al. [9] one step further, it is also possible to efficiently solve all problems with
enhanced suffix arrays that are usually solved by a bottom-up traversal of the
suffix tree; see Abouelhoda et al. [1] for details.

Clearly, it would be desirable to further reduce the space requirement of the
suffix array. Recently, interesting results in this direction have been obtained.
The most notable ones are the compressed suffix array introduced by Grossi and
Vitter [7] and the so-called opportunistic data structure devised by Ferragina
and Manzini [4]. These data structures reduce the space consumption consider-
ably. However, due to the compression, these approaches do not allow to answer
enumeration queries in O(m+z) time; instead they require O(m+z logε n) time,
where ε > 0 is a constant. Worse, experimental results [5] show that the gain in
space reduction has to be paid by considerably slower pattern matching; this is
true even for decision queries. According to [5], the opportunistic index is 8-13
times more space efficient than the suffix array, but string matching based on
the opportunistic index is 16-35 times slower than their implementation based
on the suffix array. So there is a trade-off between time and space consumption.
In contrast to that, suffix arrays can be queried at speeds comparable to suffix
trees, while being much more space efficient than these. Moreover, experimental

2

results show that our method can compete with the method of [12]. In case of
DNA sequences, it is even 1.5 times faster than the method of [12]. Therefore,
it is not only of theoretical interest but also of practical relevance.

2 Basic notions

In order to fix notation, we briefly recall some basic concepts. Let S be a string of
length |S| = n over an ordered alphabet Σ. To simplify analysis, we suppose that
the size of the alphabet is a constant, and that n < 232. The latter implies that
an integer in the range [0, n] can be stored in 4 bytes. We assume that the special
symbol $ is an element of Σ (which is larger then all other elements) but does
not occur in S. S[i] denotes the character at position i in S, for 0 ≤ i < n. For
i ≤ j, S[i..j] denotes the substring of S starting with the character at position
i and ending with the character at position j.

The suffix array suftab is an array of integers in the range 0 to n, specify-
ing the lexicographic ordering of the n + 1 suffixes of the string S$. That is,
Ssuftab[0], Ssuftab[1], . . . , Ssuftab[n] is the sequence of suffixes of S$ in ascending lex-
icographic order, where Si = S[i..n− 1]$ denotes the ith nonempty suffix of the
string S$, 0 ≤ i ≤ n. The suffix array requires 4n bytes. The direct construction
of the suffix array takes O(n · log n) time [12], but it can be build in O(n) time
via the construction of the suffix tree; see, e.g., [8].

The lcp-table lcptab is an array of integers in the range 0 to n. We define
lcptab[0] = 0 and lcptab[i] is the length of the longest common prefix of Ssuftab[i−1]

and Ssuftab[i], for 1 ≤ i ≤ n. Since Ssuftab[n] = $, we always have lcptab[n] = 0; see
Fig. 1. The lcp-table can be computed as a by-product during the construction
of the suffix array, or alternatively, in linear time from the suffix array [9]. The
lcp-table requires 4n bytes. However, in practice it can be implemented in little
more than n bytes; see section 8.

3 The lcp-intervals of a suffix array

To achieve the goals outlined in the introduction, we need the following concepts.

Definition 1. Interval [i..j], 0 ≤ i < j ≤ n, is an lcp-interval of lcp-value ` if

1. lcptab[i] < `,
2. lcptab[k] ≥ ` for all k with i + 1 ≤ k ≤ j,
3. lcptab[k] = ` for at least one k with i + 1 ≤ k ≤ j,
4. lcptab[j + 1] < `.

We will also use the shorthand `-interval (or even `-[i..j]) for an lcp-interval
[i..j] of lcp-value `. Every index k, i + 1 ≤ k ≤ j, with lcptab[k] = ` is
called `-index. The set of all `-indices of an `-interval [i..j] will be denoted by
`Indices(i, j). If [i..j] is an `-interval such that ω = S[suftab[i]..suftab[i]+`−1] is
the longest common prefix of the suffixes Ssuftab[i], Ssuftab[i+1], . . . , Ssuftab[j], then
[i..j] is also called ω-interval.

3

-

�
��1

�
��1

�
��1

�
��1

�
��1

g

g

g

g

suf- lcp- cldtab

i tab tab 1. 2. 3. Ssuftab[i]

0 2 0 2 6 aaacatat$

1 3 2 aacatat$

2 0 1 1 3 4 acaaacatat$

3 4 3 acatat$

4 6 1 3 5 atat$

5 8 2 at$

6 1 0 2 7 8 caaacatat$

7 5 2 catat$

8 7 0 7 9 10 tat$

9 9 1 t$

10 10 0 9 $

[0..10]0-

[6..7] [8..9][0..5]

[4..5][2..3] 2-3-

1-2-1-

[0..1]2-

Fig. 1. Enhanced suffix array of the string S = acaaacatat$ and its lcp-interval tree.
The fields 1, 2, and 3 of the cldtab denote the up, down, and next`Index field, respec-
tively; see Section 4. The encircled entries are redundant because they also occur in
the up field.

Definition 2. An m-interval [l..r] is said to be embedded in an `-interval [i..j]
if it is a subinterval of [i..j] (i.e., i ≤ l < r ≤ j) and m > `.1 The `-interval
[i..j] is then called the interval enclosing [l..r]. If [i..j] encloses [l..r] and there is
no interval embedded in [i..j] that also encloses [l..r], then [l..r] is called a child
interval of [i..j].

This parent-child relationship constitutes a conceptual (or virtual) tree which
we call the lcp-interval tree of the suffix array. The root of this tree is the 0-
interval [0..n]; see Fig. 1. The lcp-interval tree is basically the suffix tree without
leaves (note, however, that it is not our intention to build this tree). These
leaves are left implicit in our framework, but every leaf in the suffix tree, which
corresponds to the suffix Ssuftab[l], can be represented by a singleton interval [l..l].
The parent interval of such a singleton interval is the smallest lcp-interval [i..j]
with l ∈ [i..j]. The child intervals of an `-interval can be computed according to
the following lemma.

Lemma 3. Let [i..j] be an `-interval. If i1 < i2 < . . . < ik are the `-indices
in ascending order, then the child intervals of [i..j] are [i..i1 − 1], [i1..i2 −
1], . . . , [ik..j] (note that some of them may be singleton intervals).

Proof. Let [l..r] be one of the intervals [i..i1 − 1], [i1..i2 − 1], . . . , [ik..j]. If [l..r]
is a singleton interval, then it is a child interval of [i..j]. Suppose that [l..r] is
an m-interval. Since [l..r] does not contain an `-index, it follows that [l..r] is
embedded in [i..j]. Because lcptab[i1] = lcptab[i2] = . . . = lcptab[ik] = `, there is
no interval embedded in [i..j] that encloses [l..r]. That is, [l..r] is a child interval
of [i..j]. Finally, it is not difficult to see that [i..i1 − 1], [i1..i2 − 1], . . . , [ik..j] are
all the child intervals of [i..j], i.e., there cannot be any other child interval.

1 Note that we cannot have both i = l and r = j because m > `.

4

Based on the analogy between the suffix array and the suffix tree, it is de-
sirable to enhance the suffix array with additional information to determine, for
any `-interval [i..j], all its child intervals in constant time. We achieve this goal
by enhancing the suffix array with two tables. In order to distinguish our new
data structure from the basic suffix array, we call it the enhanced suffix array.

4 The enhanced suffix array

Our new data structure consists of the suffix array, the lcp-table, and an addi-
tional table: the child-table cldtab; see Fig. 1. The lcp-table was already presented
in Section 2. The child-table is a table of size n + 1 indexed from 0 to n and
each entry contains three values: up, down, and next`Index. Each of these three
values requires 4 bytes in the worst case. We shall see later that it is possible
to store the same information in only one field. Formally, the values of each
cldtab-entry are defined as follows (we assume that min ∅ = max ∅ = ⊥):

cldtab[i].up = min{q ∈ [0..i− 1] | lcptab[q] > lcptab[i]
and ∀k ∈ [q + 1..i − 1] : lcptab[k] ≥ lcptab[q]}

cldtab[i].down = max{q ∈ [i + 1..n] | lcptab[q] > lcptab[i]
and ∀k ∈ [i + 1..q − 1] : lcptab[k] > lcptab[q]}

cldtab[i].next`Index = min{q ∈ [i + 1..n] | lcptab[q] = lcptab[i]
and ∀k ∈ [i + 1..q − 1] : lcptab[k] > lcptab[i]}

In essence, the child-table stores the parent-child relationship of lcp-intervals.
Roughly speaking, for an `-interval [i..j] whose `-indices are i1 < i2 < . . . < ik,
the cldtab[i].down or cldtab[j + 1].up value is used to determine the first `-
index i1. The other `-indices i2, . . . ik can be obtained from cldtab[i1].next`Index,
. . . cldtab[ik−1].next`Index, respectively. Once these `-indices are known, one can
determine all the child intervals of [i..j] according to Lemma 3. As an example,
consider the enhanced suffix array in Fig. 1. The 1-[0..5] interval has the 1-
indices 2 and 4. The first 1-index 2 is stored in cldtab[0].down and cldtab[6].up.
The second 1-index is stored in cldtab[2].next`Index. Thus, the child intervals
of [0..5] are [0..1], [2..3], and [4..5]. In Section 6, it will be shown in detail how
the child-table can be used to determine the child intervals of an lcp-interval in
constant time.

5 Construction of the child-table

For clarity of presentation, we introduce two algorithms to construct the up/down
values and the next`Index value of the child-table separately. It is not difficult,
however, to devise an algorithm that constructs the whole child-table in one
scan of the lcptab. Both algorithms use a stack whose elements are indices of the
lcptab. push (pushes an element onto the stack) and pop (pops an element from
the stack and returns that element) are the usual stack operations, while top is
the topmost element of the stack. Algorithm 4 scans the lcptab in linear order

5

and pushes the current index on the stack if its lcp-value is greater than or equal
to the lcp-value of top. Otherwise, elements of the stack are popped as long as
their lcp-value is greater than that of the current index. Based on a comparison
of the lcp-values of top and the current index, the up and down fields of the
child-table are filled with elements that are popped during the scan.

Algorithm 4 Construction of the up and down values.

lastIndex := −1
push(0)
for i := 1 to n do

while lcptab[i] < lcptab[top]
lastIndex := pop

if (lcptab[i] ≤ lcptab[top]) ∧ (lcptab[top] 6= lcptab[lastIndex]) then

cldtab[top].down := lastIndex

if lcptab[i] ≥ lcptab[top] then

if lastIndex 6= −1 then

cldtab[i].up := lastIndex

lastIndex := −1
push(i)

For a correctness proof, we need the following lemma.

Lemma 5. The following invariants are maintained in the while-loop of Al-
gorithm 4: If i1, . . . , ip are the indices on the stack (where ip is the topmost
element), then i1 < · · · < ip and lcptab[i1] ≤ · · · ≤ lcptab[ip]. Moreover, if
lcptab[ij] < lcptab[ij+1], then for all k with ij < k < ij+1 we have lcptab[k] >
lcptab[ij+1].

Theorem 6. Algorithm 4 correctly fills the up and down fields of the child-table.

Proof. If the cldtab[top].down := lastIndex statement is executed, then we
have lcptab[i] ≤ lcptab[top] < lcptab[lastIndex] and top < lastIndex < i.
Recall that cldtab[top].down is the maximum of the set M = {q ∈ [top +
1..n] | lcptab[q] > lcptab[top] and ∀k ∈ [top + 1..q − 1] : lcptab[k] > lcptab[q]}.
Clearly, lastIndex ∈ [top + 1..n] and lcptab[lastIndex] > lcptab[top]. Further-
more, according to Lemma 5, for all k with top < k < lastIndex we have
lcptab[k] > lcptab[lastIndex]. In other words, lastIndex is an element of M .
Suppose that lastIndex is not the maximum of M . Then there is an element q′

in M with lastIndex < q′ < i. According to the definition of M , it follows that
lcptab[lastIndex] > lcptab[q′]. This, however, implies that lastIndex must have
been popped from the stack when index q′ was considered. This contradiction
shows that lastIndex is the maximum of M .

If the cldtab[i].up := lastIndex statement is executed, then lcptab[top] ≤
lcptab[i] < lcptab[lastIndex] and top < lastIndex < i. Recall that cldtab[i].up
is the minimum of the set M ′ = {q ∈ [0..i − 1] | lcptab[q] > lcptab[i] and ∀k ∈
[q + 1..i − 1] : lcptab[k] ≥ lcptab[q]}. Clearly, we have lastIndex ∈ [0..i − 1]
and lcptab[lastIndex] > lcptab[i]. Moreover, for all k with lastIndex < k < i we
have lcptab[k] ≥ lcptab[lastIndex] because otherwise lastIndex would have been

6

popped earlier from the stack. In other words, lastIndex ∈ M ′. Suppose that
lastIndex is not the minimum of M ′. Then there is a q′ ∈ M ′ with top < q′ <
lastIndex. According to the definition of M ′, it follows that lcptab[lastIndex] ≥
lcptab[q′] > lcptab[i] ≥ lcptab[top]. Hence, index q′ must be an element between
top and lastIndex on the stack. This contradiction shows that lastIndex is the
minimum of M ′.

The construction of the next`Index field is easier. One merely has to check
whether lcptab[i] = lcptab[top] holds true. If so, then index i is assigned to the
field cldtab[top].next`Index. It is not difficult to see that Algorithms 4 and 7
construct the child-table in linear time and space.

Algorithm 7 Construction of the next`Index value.

push(0)
for i := 1 to n do

while lcptab[i] < lcptab[top]
pop

if lcptab[i] = lcptab[top] then

lastIndex := pop

cldtab[lastIndex].next`Index := i

push(i)

To reduce the space requirement of the child-table, only one field is used
in practice. The down field is needed only if it does not contain the same in-
formation as the up field. Fortunately, for an `-interval, only one down field is
required because an `-interval [i..j] with k `-indices has at most k + 1 child
intervals. Suppose [l1..r1], [l2..r2], . . . , [lk..rk], [lk+1..rk+1] are the k + 1 child
intervals of [i..j], where [lq..rq] is an `q-interval and iq denotes its first `q-
index for any 1 ≤ q ≤ k + 1. In the up field of cldtab[r1 + 1], cldtab[r2 +
1], . . . , cldtab[rk + 1] we store the indices i1, i2, . . . , ik, respectively. Thus, only
the remaining index ik+1 must be stored in the down field of cldtab[rk + 1].
This value can be stored in cldtab[rk + 1].next`Index because rk + 1 is the
last `-index and hence cldtab[rk + 1].next`Index is empty; see Fig. 1. How-
ever, if we do this, then for a given index i we must be able to decide whether
cldtab[i].next`Index contains the next `-index or the cldtab[i].down value. This
can be accomplished as follows. cldtab[i].next`Index contains the next `-index if
lcptab[cldtab[i].next`Index] = lcptab[i], whereas it stores the cldtab[i].down value
if lcptab[cldtab[i].next`Index] > lcptab[i]. This follows directly from the defini-
tion of the next`Index and down field, respectively. Moreover, the memory cells
of cldtab[i].next`Index, which are still unused, can store the values of the up field.
To see this, note that cldtab[i + 1].up 6= ⊥ if and only if lcptab[i] > lcptab[i + 1].
In this case, we have cldtab[i].next`Index = ⊥ and cldtab[i].down = ⊥. In other
words, cldtab[i].next`Index is empty and can store the value cldtab[i+1].up; see
Fig. 1. Finally, for a given index i, one can decide whether cldtab[i].next`Index
contains the value cldtab[i+1].up by testing whether lcptab[i] > lcptab[i+1]. To
sum up, although the child-table theoretically uses three fields, only space for
one field is actually required.

7

6 Determining child intervals in constant time

Given the child-table, the first step to locate the child intervals of an `-interval
[i..j] in constant time is to find the first `-index in [i..j], i.e., min `Indices(i, j).
This is possible with the help of the up and down fields of the child-table:

Lemma 8. For every `-interval [i..j] the following statements hold:

1. i < cldtab[j + 1].up ≤ j or i < cldtab[i].down ≤ j.
2. cldtab[j + 1].up stores the first `-index in [i..j] if i < cldtab[j + 1].up ≤ j.
3. cldtab[i].down stores the first `-index in [i..j] if i < cldtab[i].down ≤ j.

Proof. (1) First, consider index j +1. Suppose lcptab[j +1] = `′ and let I ′ be the
corresponding `′-interval. If [i..j] is a child interval of I ′, then lcptab[i] = `′ and
there is no `-index in [i + 1..j]. Therefore, cldtab[j + 1].up = min `Indices(i, j),
and consequently i < cldtab[j + 1].up ≤ j. If [i..j] is not a child interval of I ′,
then we consider index i. Suppose lcptab[i] = `′′ and let I ′′ be the corresponding
`′′-interval. Because lcptab[j + 1] = `′ < `′′ < `, it follows that [i..j] is a child
interval of I ′′. We conclude that cldtab[i].down = min `Indices(i, j). Hence, i <
cldtab[i].down ≤ j.
(2) If i < cldtab[j + 1].up ≤ j, then the claim follows from cldtab[j + 1].up =
min{q ∈ [i+1..j] | lcptab[q] > lcptab[j+1], lcptab[k] ≥ lcptab[q] ∀k ∈ [q+1..j]} =
min{q ∈ [i + 1..j] | lcptab[k] ≥ lcptab[q] ∀k ∈ [q + 1..j]} = min `Indices(i, j).
(3) Let i1 be the first `-index of [i..j]. Then lcptab[i1] = ` > lcptab[i] and for
all k ∈ [i + 1..i1 − 1] the inequality lcptab[k] > ` = lcptab[i1] holds. Moreover,
for any other index q ∈ [i + 1..j], we have lcptab[q] ≥ ` > lcptab[i] but not
lcptab[i1] > lcptab[q].

Once the first `-index i1 of an `-interval [i..j] is found, the remaining `-indices
i2 < i3 < . . . < ik in [i..j], where 1 ≤ k ≤ |Σ|, are obtained successively from the
next`Index field of cldtab[i1], cldtab[i2], . . . , cldtab[ik−1]. It follows that the child
intervals of [i..j] are the intervals [i..i1 − 1], [i1..i2 − 1], . . . , [ik..j]; see Lemma
3. The pseudo-code implementation of the following function getChildIntervals
takes a pair (i, j) representing an `-interval [i..j] as input and returns a list
containing the pairs (i, i1 − 1), (i1, i2 − 1), . . . , (ik, j).

Algorithm 9 getChildIntervals, applied to an lcp-interval [i..j] 6= [0..n].

intervalList = []
if i < cldtab[j + 1].up ≤ j then

i1 := cldtab[j + 1].up

else i1 := cldtab[i].down

add(intervalList, (i, i1 − 1))
while cldtab[i1].next`Index 6= ⊥ do

i2 := cldtab[i1].next`Index

add(intervalList, (i1, i2 − 1))
i1 := i2

add(intervalList, (i1, j))

8

The function getChildIntervals runs in constant time, provided the alpha-
bet size is constant. Using getChildIntervals one can simulate every top-down
traversal of a suffix tree on an enhanced suffix array. To this end, one can easily
modify the function getChildIntervals to a function getInterval which takes an
`-interval [i..j] and a character a ∈ Σ as input and returns the child interval [l..r]
of [i..j] (which may be a singleton interval) whose suffixes have the character a
at position `. Note that all the suffixes in [l..r] share the same `-character prefix
because [l..r] is a subinterval of [i..j]. If such an interval [l..r] does not exist,
getInterval returns ⊥.

With the help of Lemma 8, it is also easy to implement a function getlcp(i, j)
that determines the lcp-value of an lcp-interval [i..j] in constant time as follows: If
i < cldtab[j+1].up ≤ j, then getlcp(i, j) returns the value lcptab[cldtab[j+1].up],
otherwise it returns the value lcptab[cldtab[i].down].

7 Answering queries in optimal time

As already mentioned in the introduction, given the basic suffix array, it takes
O(m · log n) time in the worst case to answer decision queries. By using an
additional table (similar to the lcp-table), this time complexity can be improved
to O(m+log n); see [12]. The logarithmic terms are due to binary searches, which
locate P in the suffix array of S. In this section, we show how enhanced suffix
arrays allow us to answer decision and enumeration queries for P in optimal
O(m) and O(m + z) time, respectively, where z is the number of occurrences of
P in S.

Algorithm 10 Answering decision queries.

c := 0
queryFound := True

(i, j) := getInterval(0, n, P [c])
while (i, j) 6= ⊥ and c < m and queryFound = True

if i 6= j then

` := getlcp(i, j)
min := min{`, m}
queryFound := S[suftab[i] + c..suftab[i] + min − 1] = P [c..min − 1]
c := min

(i, j) := getInterval(i, j, P [c])
else queryFound := S[suftab[i] + c..suftab[i] + m − 1] = P [c..m − 1]

if queryFound then

Report(i, j) /* the P -interval */

else print “pattern P not found”

The algorithm starts by determining with getInterval(0, n, P [0]) the lcp or
singleton interval [i..j] whose suffixes start with the character P [0]. If [i..j] is a
singleton interval, then pattern P occurs in S if and only if S[suftab[i]..suftab[i]+
m−1] = P . Otherwise, if [i..j] is an lcp-interval, then we determine its lcp-value
` by the function getlcp; see end of Section 6. Let ω = S[suftab[i]..suftab[i]+`−1]

9

be the longest common prefix of the suffixes Ssuftab[i], Ssuftab[i+1], . . . , Ssuftab[j]. If
` ≥ m, then pattern P occurs in S if and only if ω[0..m − 1] = P . Otherwise, if
` < m, then we test whether ω = P [0..`− 1]. If not, then P does not occur in S.
If so, we search with getInterval(i, j, P [`]) for the `′- or singleton interval [i′..j′]
whose suffixes start with the prefix P [0..`] (note that the suffixes of [i′..j′] have
P [0..`− 1] as a common prefix because [i′..j′] is a subinterval of [i..j]). If [i′..j′]
is a singleton interval, then pattern P occurs in S if and only if S[suftab[i′] +
`..suftab[i′] + m − 1] = P [`..m − 1]. Otherwise, if [i′..j′] is an `′-interval, let
ω′ = S[suftab[i′]..suftab[i′] + `′ − 1] be the longest common prefix of the suffixes
Ssuftab[i′], Ssuftab[i′+1], . . . , Ssuftab[j′]. If `′ ≥ m, then pattern P occurs in S if and
only if ω′[`..m− 1] = P [`..m− 1] (or equivalently, ω[0..m − 1] = P). Otherwise,
if `′ < m, then we test whether ω[`..`′− 1] = P [`..`′− 1]. If not, then P does not
occur in S. If so, we search with getInterval(i′, j′, P [`′]) for the next interval,
and so on.

Enumerative queries can be answered in optimal O(m + z) time as follows.
Given a pattern P of length m, we search for the P -interval [l..r] using the
preceding algorithm. This takes O(m) time. Then we can report the start po-
sition of every occurrence of P in S by enumerating suftab[l], . . . , suftab[r]. In
other words, if P occurs z times in S, then reporting the start position of every
occurrence requires O(z) time in addition.

8 Implementation details

We store most of the values of table lcptab in a table lcptab1 using n bytes. That
is, for any i ∈ [1, n], lcptab1[i] = max{255, lcptab[i]}. There are usually only
few entries in lcptab that are larger than or equal to ≥ 255; see Section 9. To
access these efficiently, we store them in an extra table llvtab. This contains all
pairs (i, lcptab[i]) such that lcptab[i] ≥ 255, ordered by the first component. At
index i of table lcptab1 we store 255 whenever, lcptab[i] ≥ 255. This tells us that
the correct value of lcptab is found in llvtab. If we scan the values in lcptab1 in
consecutive order and find a value 255, then we access the correct value in lcptab

in the next entry of table llvtab. If we access the values in lcptab1 in arbitrary
order and find a value 255 at index i, then we perform a binary search in llvtab

using i as the key. This delivers lcptab[i] in O(log2 |llvtab|) time.
In cldtab we store relative indices. For example, if j = cldtab[i].next`Index,

then we store j−i. The relative indices are almost always smaller than 255. Hence
we use only one byte for storing a value of table cldtab. The values ≥ 255 are not
stored. Instead, if we encounter the value 255 in cldtab, then we use a function
that is equivalent to getInterval , except that it determines a child interval by a
binary search, similar to the algorithm of [12, page 937]. Consequently, instead
of 4 bytes per entry of the child-table, only 1 byte is needed. The overall space
consumption for tables suftab, lcptab, and cldtab is thus only 6n bytes.

Additionally, we use an extra bucket table. For a given parameter q, we store
for each string w of length q the smallest integer i, such that Ssuftab[i] is a prefix of
w. In this way, we can answer small queries of length m ≤ q in constant time. For

10

larger queries, this bucket table allows us to locate the interval containing the q-
character prefix P [0..q−1] of the query P in constant time. Then our algorithm,
which searches for the pattern P in S, starts with this interval instead of the
interval [0..n]. The advantage of this hybrid method is that only a small part of
the suffix array is actually accessed. In particular, we only rarely access a field
with value 255 in cldtab.

9 Experimental results

For our experiments, we collected a set of four files of different sizes and types:

1. ecoli is the complete genome of the bacterium Escherichia coli, i.e., a DNA
sequence of length 4,639,221. The alphabet size is 4.

2. yeast is the complete genome of the baker’s yeast Saccharomyces cerevisiae,
i.e., a DNA sequence of length 12,156,300. The alphabet size is 4.

3. swiss is a collection of protein sequences from the Swissprot database. The
total size of all protein sequences is 2,683,054. The alphabet size is 20.

4. shaks is a collection of the complete works of William Shakespeare. The total
size is 5,582,655 bytes. The alphabet size is 92.

We use the algorithm of [3] to sort suffixes, i.e., to compute table suftab.
Table lcptab is constructed as a by-product of the sorting. The construction
of the enhanced suffix array (including storage on file) requires: 6.6 sec. and
21 MB RAM for ecoli , 27 sec. and 51 MB RAM for yeast , 7 sec. and 13 MB for
swiss , 7 sec. and 32 MB for shaks . These and all other timings include system
time and refer to a computer with a 933 MHz Pentium PIII Processor and
512 MB RAM, running Linux. We ran three different programs for answering
enumeration queries:

1. stree is based on an improved linked list suffix tree representation as de-
scribed in [10]. Searching for a pattern and enumerating the z occurrences
takes O(m + z) time. The space requirement is 12.6n bytes for ecoli and
yeast , 11.6n bytes for swiss , and 9.6n bytes for shaks .

2. mamy is based on suffix arrays and uses the algorithm of [12, page 937].
We used the original program code developed by Gene Myers. Searching for
a pattern and enumerating its occurrences takes O(m log n + z) time. The
space requirement is 4n bytes for all files.

3. esamatch is based on enhanced suffix arrays (tables suftab, lcptab, cldtab)
and uses Algorithm 10. Searching a pattern takes O(m + z) time. The space
requirement is 6n bytes.

The programs stree and mamy first construct the index in main memory and
then perform pattern searches. esamatch accesses the enhanced suffix array from
file via memory mapping.

Table 1 shows the running times in seconds for the different programs when
searching for one million patterns. This seems to be a large number of queries to

11

minpl = 20, maxpl = 30

stree mamy esamatch

file time time time

ecoli 7.40 4.86 3.09

yeast 8.97 5.18 3.41

swiss 10.53 3.40 3.34

shaks 44.55 3.43 28.54

minpl = 30, maxpl = 40

stree mamy esamatch

time time time

7.47 5.00 3.23

9.16 5.35 3.53

10.47 3.53 3.40

18.45 3.47 27.14

minpl = 40, maxpl = 50

stree mamy esamatch

time time time

7.63 5.12 3.35

9.20 5.43 3.66

10.55 3.65 3.45

13.15 3.58 27.00

Table 1. Running times (in seconds) for one million enumeration queries searching for
exact patterns in the input strings.

be answered. However, at least in the field of genomics, it is relevant; see [8]. For
example, when comparing two genomes it is necessary to match all substrings
of one genome against all substrings of the other genome, and this requires to
answer millions of enumeration queries in very short time.

The smallest running times in Table 1 are underlined. The time for index
construction is not included. Patterns were generated according to the follow-
ing strategy: For each input string S of length n we randomly sampled p =
1,000,000 substrings s1, s2, . . . , sp of different lengths from S. The lengths were
evenly distributed over different intervals [minpl,maxpl], where (minpl,maxpl) ∈
{(20, 30), (30, 40), (40, 50)}. For i ∈ [1, p], the programs were called to search for
pattern pi, where pi = si, if i is even, and pi is the reverse of si, if i is odd. Re-
versing a string si simulates the case that a pattern search is often unsuccessful.

The running time of all three programs is only slightly dependent on the size
of the input strings and the length of the pattern. The only exception is stree
applied to shaks , where the running time increases by a factor of about 2.5,
when searching for smaller patterns. This is due to the fact that there are many
patterns of length between 20 and 30 that occur very often in shaks (for example,
lines that consist solely of white spaces). Enumerating their occurrences requires
to traverse substantial parts of the suffix tree, which are often far apart in main
memory. This slows down the enumeration. In contrast, in the suffix array the
positions to be enumerated are stored in one consecutive memory area. As a
consequence, for esamatch and mamy enumerating occurrences requires virtually
no extra time. As expected, the running times of stree and esamatch depend on
the alphabet size, while mamy shows basically the same speed for all files. For
shaks it is much faster than the other programs, due to the large alphabet. For
the other files, esamatch is always more than twice as fast as stree and slightly
faster than mamy (1.5 times faster for DNA). This shows that esamatch is not
only of theoretical interest.

Acknowledgments. We thank Dirk Strothmann, who observed that the values of
the up field can also be stored in the next`Index field of the child-table. Gene
Myers provided his code for constructing and searching suffix arrays.

12

References

1. M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The Enhanced Suffix Array and
its Applications to Genome Analysis. In Proceedings of the Second Workshop on
Algorithms in Bioinformatics. Springer Verlag, Lecture Notes in Computer Science,
accepted for publication, 2002.

2. A. Apostolico. The Myriad Virtues of Subword Trees. In Combinatorial Algorithms
on Words, Springer Verlag, pages 85–96, 1985.

3. J. Bentley and R. Sedgewick. Fast Algorithms for Sorting and Searching Strings. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 360–369,
1997.

4. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
IEEE Symposium on Foundations of Computer Science, pages 390–398, 2000.

5. P. Ferragina and G. Manzini. An experimental study of an opportunistic index.
In Symposium on Discrete Algorithms, pages 269–278, 2001.

6. G. Gonnet, R. Baeza-Yates, and T. Snider. New Indices for Text: PAT trees and
PAT arrays. In W. Frakes and R.A. Baeza-Yates, editors, Information Retrieval:
Algorithms and Data Structures, pages 66–82. Prentice-Hall, Englewood Cliffs, NJ,
1992.

7. R. Grossi and J.S. Vitter. Compressed Suffix Arrays and Suffix Trees with Appli-
cations to Text Indexing and String Matching. In ACM Symposium on the Theory
of Computing (STOC 2000) , pages 397–406. ACM Press, 2000.

8. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York, 1997.

9. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-Time Longest-
Common-Prefix Computation in Suffix Arrays and its Applications. In Proceedings
of the 12th Annual Symposium on Combinatorial Pattern Matching, July 2001,
Lecture Notes in Computer Science 2089, Springer Verlag, pages 181–192, 2001.

10. S. Kurtz. Reducing the Space Requirement of Suffix Trees. Software—Practice
and Experience, 29(13):1149–1171, 1999.

11. N.J. Larsson and K. Sadakane. Faster Suffix Sorting. Technical Report LU-CS-
TR:99-214, Dept. of Computer Science, Lund University, 1999.

12. U. Manber and E.W. Myers. Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, 22(5):935–948, 1993.

13. P. Weiner. Linear Pattern Matching Algorithms. In Proceedings of the 14th IEEE
Annual Symposium on Switching and Automata Theory, pages 1–11, The Univer-
sity of Iowa, 1973.

13

