
Straight to the Heart of
Computer Science via Functional Programming

Robert Giegerich
�

Ralf Hinze
�

Stefan Kurtz
�

�����	��

�����

We outline a deductive concept for an introductory
course to computer science aimed at CS students as well as
students from other disciplines. The emphasis is on intro-
ducing fundamental concepts of computer science and show-
ing how they evolve from each other. Functional program-
ming in Haskell is used as a vehicle to explain these concepts
and to allow for practical exercises. We argue that functional
programming is more than just a good option for such an in-
troductory course. Functional programming is so intimately
related to the essence of computing that it allows to develop
CS fundamentals in a way that is logically stringent as well
as exciting.

��� ����� ������� �����������! "� ��� �#�$��� %'&(����
$�)%�*+����� ���,�	�.-0/

��12�4365 �7�8�,9:�7�+� �#� �;�$��
</=��*�%+>#�?��@.-�/ 3 *+�+%���AB�7���	��� �

All computer science curricula have to make a fundamental
decision about how beginners should be introduced to CS.
Some start with a programming course aiming to give em-
phasis to practical experience before theoretical underpin-
ning. Some start with theoretical aspects of computing post-
poning programming to
later or concurrent courses. While both ways are feasible
(after all, the authors were taught CS that way), both have a
disadvantage: The first suggests to the student that one can
become a good programmer without studying theory. The
second separates formal concepts from programming prac-
tice, suggesting the impression that programming theory is
C

Technische Fakultät, Universität Bielefeld, Postfach 100 131, 33501 Bielefeld,
Germany, Email: robert@techfak.uni-bielefeld.deD

Institut für Informatik III, Universität Bonn, Römerstraße 164, 53117 Bonn, Ger-
many, Email: ralf@informatik.uni-bonn.deE

Technische Fakultät, Universität Bielefeld, Postfach 100 131, 33501 Bielefeld,
Germany, Email: kurtz@techfak.uni-bielefeld.de, partially supported by DFG-grant
Ku 1257/1-1

something else, but not the explanation of what we do in
practice. The student’s attitude to theory as “mere theory”
results from this, and both, students and teachers, later pay
a high price for this. The best solution, of course, is to do
both kinds of courses in parallel. But then, the same instruc-
tor should teach both courses, otherwise the problem is only
disguised.

The Bielefeld computer science department runs a non-
standard CS program called “Naturwissenschaftliche Infor-
matik”, where students take two major subjects of about
equal proportions, say, CS and molecular biology. The term
“Bioinformatics” has been coined for this particular new branch
of science. Together with governmentally imposed restric-
tions on the volume of study, the combination of two major
subjects requires considerable efforts to design a manage-
able curricular volume. At the same time, the introductory
course is always attended by students from a wide spectrum
of other fields. This may be the only course in computer sci-
ence they take. So we really want to convey a fundamental
understanding.

��1?FHGJI �7
 I � ��KL���:MN��O�� �P�

Although our CS-course does not explicitly dwell on this,
it is based on a very strict line of deductive reasoning. We
begin with a definition of computer science and then we see
were this leads us to. An overview of the topics is given in
Figure 1.

Since the pathways of logical deduction and those of learn-
ing do not always coincide, topics are not
taught strictly in the order shown in Figure 1. The course
postpones the topics 2c, 4d, and 4e when moving through
the corresponding chapters. There are two good reasons for
doing so: Languages and grammars are better motivated af-
ter some programming has been done and arrays (as well as
dynamic programming) only arise because of efficiency con-
cerns. After the
chapter on efficiency, there is a “virtual” chapter where we
return to modelling, programming methods, and efficiency
concerns in an amalgamated fashion. We introduce gram-
mars, parser combinators, and their transformation into dy-

1. Theory of Science

(a) What is Computer Science?

(b) Traditional fields of CS

(c) Relation to other sciences

2. Modelling

(a) Music

(b) Molecular Genetics

(c) Grammars, Languages, and Recognizers

3. A Programming Language

(a) Types

(b) Equations

(c) Expressions

(d) Computing in Haskell

(e) Application: Binary Trees

4. Programming Methods

(a) Structural Recursion

(b) Divide-and-Conquer

(c) Application: Sorting

(d) Combinator Languages

(e) Dynamic Programming

5. Algorithmic Complexity

(a) Asymptotic Efficiency

(b) Problem Complexity

(c) Program Optimization

6. Abstraction

(a) Type Classes

(b) Sequence Data Types

(c) Outlook: Object Oriented Programming

Figure 1: The topics of our CS-course

namic programming algorithms.

��1 ��� ����� �8���0���+� � 5 ��O���

In the remainder of this short paper, we cannot redraw the
complete concept of our course. We shall be very short on
those subjects that are taught fairly conventionally and a lit-
tle more explicit on those that have a special touch. We give
some examples how the subjects we are teaching are conve-
niently expressed in Haskell [4]. Some details are omitted
and we rely on the reader to be able to understand the Has-
kell examples without much added explanation. We hope
that these examples provide convincing evidence that func-
tional programming is an excellent vehicle to take the stu-
dents’ minds straight to the heart of computer science.

F 3 *���%���AB���7�	��� -"�����P�7O��	�J����-"��A O+*����?��@

The following is a condensed version of the main topics of
our CS-course.

F)12� M����,/ �P� ����� �;��� -"��A O+*��	�#��� ��� ��>�� ���#���?���

Computer Science is the science of computation by machine.
What is special about computation such that it can be done
by a machine? We observe ourselves when we do numeri-
cal calculation: We restrict our thinking to formal reasoning,
more precisely, we manipulate
numbers or more generally formulae according to
rules of arithmetic or algebra. Why these rules are adequate
does not concern us during calculation. In fact, restricting
our attention to obeying these rules makes calculation both
effective and boring. By its very nature, computing with
numbers is a mechanical exercise of the mind. To transfer
this to a machine, all it requires is a device that can manip-
ulate formulae in a reliable and flexible manner. No wonder
that the first numeric calculators were invented shortly after

mankind had learned to divide and long before engineering
was advanced enough to build such devices reliably.

Once such devices have been built, a fundamentally new
question enters the horizon of science — programming. Now
there is a machine that can do formal manipulation, what
can we have it do? Aside from numeric computation, which
problems of reality can be modelled in terms of formulae
(data structures) and rules (programs)? There are few ar-
eas of interest that are, like arithmetic, formal by nature; in
all other cases our formalization only approximates reality.
This accounts for the difficulty as well as for the excitement
of programming.

Theoretical Computer Science studies the absolute (de-
cidability) and gradual limits (complexity) of what can be
computed by machine. Its most important finding is that all
machines with a minimal set of capabilities can solve the
same class of problems. (That there are formally undecid-
able problems does not come as a surprise to anyone who
started out understanding computing as a restricted sort of
reasoning.) The consequence of Church’s thesis on the tech-
nical side is that Technical Computer Science concentrates
on making computers faster, smaller, and cheaper while there
is no evolution in the basic operations. With computers re-
maining as primitive as ever, the burden is on Practical Com-
puter Science: It has to bridge the semantic gap between
the machine’s capabilities and the ever more advanced ap-
plications by building layers of abstraction, such as oper-
ating systems, programming languages, network protocols,
and the World Wide Web. Applied Computer Science uses
these achievements to extend computer usage into all sci-
ences and all aspects of human life. The use of computers
to do tasks also done by humans tends to create the illusion
that the job is done in the same way. The illusion of Artifi-
cial Intelligence has been the halo of computers ever since
the sixties. As a research field dedicated to the promotion of
the illusion that comes from a subject (rather than the sub-

ject itself), the advance of Artificial Intelligence adheres to a
pattern of promise and disappointment: while its best results
are absorbed by the general advance of computer science,
the illusion is never perfect.

As much as everyone, computer scientists should be aware
of the social impacts of their work. Although it makes us feel
important, computer scientists should reject the modernistic
view of living in “the computer age”. The rapid pervasion of
the working sector has a social as much as a technical reason.
By the advent of the computer, the disintegration of labor
had already created a wide area of jobs stripped off com-
pletely of creativity and responsibility, with workers largely
reduced to mindful machines. It takes no “computer revo-
lution” to replace them by software and to concentrate the
more demanding tasks on a few remaining jobs. That the
computer is everywhere does not mean it is the driving force
of our society. Computer scientists taking social responsibil-
ity must be prepared to study economy and politics as well
as computer science.

F)1 F M���� -0����� � ����@�� ��� � �=%+�7� � �?��@

If the central task of CS is approximating aspects of real-
ity by formal models, then we should emphasize the impor-
tance of modelling. Modelling goes before computation in
our course. This reverses current approaches, which start
with computation on trivial (not to say boring) data and only
add data structures and real world examples at a rather late
stage. Our dogma of Chapter 1 (Theory of Science) is “data
are formulae” and, indeed, we can look at modelling right
away by constructing worlds of formulae. The difficulty is
to find real world subjects that are somewhat interesting but
still easy to model. The solution is to choose subjects that
by their own nature have a largely formal character. They
should be easy to cast into formulae but still rich enough to
be interesting. (This is why numbers do not qualify here as
they are a completely formal world already and modelling
is trivial.) Fortunately, there are such subjects. Music and
molecular genetics are our two introductory subjects.

In spite of the artistic expression, individual performance,
and other aspects, music has a largely formal character. The
harmonic scale, polyphony, and rhythm follow formal rules.
So does the structure of musical pieces, be they a simple folk
tune or a symphony. Consequently, a formal notation has
already evolved to describe music. While traditional musi-
cal scores are written in a graphical notation, we introduce
formulae to describe notes, chords, durations, harmonic in-
version etc. leading to a formula that describes a complete
piece of music, see Figure 2. The music formulae are written
in Haskell notation borrowed from the Haskore system [2].

As a second semi-formal system found in nature we use
molecular genetics. The cell’s “data” are represented by long
chain molecules built from nucleotides or amino acids—nature
uses strings over two different alphabets. We model en-
zyme activities as functions (DNA replication, proof read-

ing). The ribosome constitutes a function that applies the
genetic code (another function) to split messenger RNA into
triplets and to produce the corresponding amino acid se-
quence. We also discuss the limits of our model. For ex-
ample, the cell can distinguish a fresh complementary copy
of some DNA strand from its original—in our model, once
calculated, they are merely two strings without history, see
Figure 3.

Music and molecular genetics are certainly not the stan-
dard examples for introduction to CS. Most textbooks prefer
more abstract data types like numbers or lists. It is the semi-
formal nature of the chosen topics which makes these exam-
ples workable requiring no more than average high school
knowledge about music and genetics. Choosing such exam-
ples also places students with diverse backgrounds in com-
puting on the same level.

At the end of the modelling chapter we have a number of
interesting data types to play with as well as first examples
of type polymorphism and higher order functions. We have
not talked about computing yet and some students are actu-
ally taken by surprise when Hugs comes in a week later to
execute the ribosome function.

F)1 � � / �?A O+� ��������@�*���@+� �$��
 5

��@�

��A A;� ��@

The programming language Haskell is introduced in a rather
rudimentary form. We fix the syntax for data type declara-
tions, expressions, and equations. We skip many notational
conveniences of Haskell. We try to restrict the specific teach-
ing of the language to about five sessions. This works be-
cause students already know most of the notation from the
modelling chapter. Evaluation order is left arbitrary. We
assure the students that the computer calculates with these
formulae and equations the same way that they do, except
more reliably by following formally stated rules of reduc-
tion. Funny enough, the critical point in this chapter is to
convince the students that there is no further magic behind
computing by machine than formula manipulation guided by
equational definitions.

F)1 � 5

��@�

��A A;�?��@ � �#�����)%�� ����% � �����������?��@J������*7� 5
$�+@�
$��AB�

As general methods of programming we introduce
Structural Recursion and Divide-and-Conquer. Program ex-
amples from the previous chapter are analyzed and the re-
cursion scheme is made explicit, see Figure 4. It is quite
convenient that recursion schemes can be expressed in Has-
kell as higher order functions. This proves that the schemes
are not just in the eye of the beholder but are working tech-
niques even if we do not always make them explicit in our
programming.

All along the way we have been doing proofs of simple
program properties by equational reasoning.
Structural and well-founded induction are formulated in this
chapter as the proof rules corresponding to the two recursion
schemes.

F)1 � � ��>�A O7�	����� ����� �P� �����P>
In everyday life (including that of the scientist) the term
“complexity” is mostly used in a careless fashion. Our own
lack of understanding of a subject is attributed to the subject
as one of its properties. But we all—and hopefully espe-
cially our students—make the experience that what seems
complicated at first glance turns into a convenience of rea-
soning after some time of study. In most cases, “complexity”
is an excuse rather than a statement about anything. Thus
it needs to be explained why in computer science algorith-
mic complexity is a meaningful notion. It does not mean
that a program is hard to understand but it means that the
machine that eventually has to execute it cannot do faster
than a certain number of steps. Computational complexity is
meaningful only because of Church’s thesis, which says that
computing machines do not become enlightened.

We introduce the typical ���	�
����
�
 machinery. Time is
measured by the number of reductions while space is mea-
sured by the size of the formula. The latter is visualized by
the management of blackboard area of the lecturer perform-
ing a computation. Problem complexity is introduced via the
example of decision trees for sorting including the assump-
tions made on basic operations that are possible on the data
(sorting by comparison versus counting sort).

F)1 � � �=%+�7� � �?��@�� 5

��@�

��A A;� ��@�� ����%���� �P� �����P> � � I � ��� �	��%
Reality modelling, programming, and efficiency are addressed
once more in a more demanding setting. We study pairwise
sequence comparison motivated by the study of phylogenetic
relationships on (say) related
genes from different species. (In the somewhat more abstract
terms of computer science, this is the edit distance problem
on strings.) We introduce a data type for sequence align-
ments and show that it is not expressive enough to model our
intents. It allows to express various alignments that do not
make sense biologically. A language of well-formed align-
ments is designated by a tree grammar. Determining all and
only the well-formed alignments of two sequences is a pars-
ing problem. Alignments are evaluated in terms of a scoring
scheme for replacements, deletions, and insertions. Select-
ing the alignment(s) with a minimal edit distance is our first
case of an optimization problem. So much for the problem
specification.

Using Haskell infix operators a notation for tree
grammars is introduced. A grammar turns into a recognizer
by defining these operators as parser combinators [3]. This
yields a recursive, predictive parser and an impressive ef-
ficiency problem as the number of alignments is exponen-
tial in the length of the sequences and some sub-alignments
are re-calculated an exponential number of times. We then
introduce arrays and augment the grammar with respect to
tabulation of intermediate parser results. At the same time,
we replace enumeration of alignments by their evaluation in
terms of the distance score. This yields a program with poly-

nomial time efficiency, see Figure 5. By means of partial
evaluation, we derive the recurrences in terms of which dy-
namic programming algorithms are traditionally described
in the literature, see [5].

Aside from the modelling chapter, this is the most un-
conventional topic in our course. An application of this ap-
proach to dynamic programming in a research context can be
found in a companion paper [1] presented at the WAAAPL
workshop at this conference.

F)1�� �����	��

������� ���

The final chapter discusses various kinds of abstractions and
how they help us to master the complexity of the formal
models of reality that we create. It ends with an outlook
on type classes and object oriented programming preparing
the ground for teaching Java in the second semester course.

� - ���+�#� *�� � ���

The approach outlined here allows us to cover a quite con-
ventional selection of CS fundamentals in a somewhat un-
conventional way and in a very short time. The line of thought
is equally challenging for novices as for students with con-
siderable (imperative) programming experience. While we
are quite happy with the course in its current form, it does
create a problem for the second semester course: Students
get bored because trivial programming problems, much sim-
pler than
those in the first course, take so much more writing and ef-
fort in an imperative setting.

� �P�$��
$�����P�#�

[1] R. Giegerich, S. Kurtz, and G.F. Weiller. An Alge-
braic Dynamic Programming Approach to the Analysis
of Recombinant DNA Sequences. In Workshop on Algo-
rithmic Ascpects of Advanced Programming Languages
(WAAAPL), 1999.

[2] P. Hudak, T. Makucevich, S. Gadde, and B. Whong.
Haskore Music Notation. J. Functional Programming,
6(3), 1996.

[3] G. Hutton. Higher Order Functions for Parsing. J. Func-
tional Programming, 3(2):323–343, 1992.

[4] S. Peyton Jones and J. Hughes, editors.
Haskell 98 — A Non-strict, Purely Func-
tional Language, 1999. Available from
http://www.haskell.org/onlinereport/.

[5] M.S. Waterman. Introduction to Computational Biol-
ogy: Maps, Sequences and Genomes. Chapman Hall,
1995.

type Tone = Int
type Duration = Rational
data Instrument = Oboe | HonkyTonkPiano | Cello | VoiceAahs
data Music = Note Tone Duration

| Pause Duration
| Music :*: Music -- sequentiell composition
| Music :+: Music -- parallel composition
| Instr Instrument Music
| Tempo Int Music

cDurScale = Tempo allegro (c’ (3/8) :*: d’ (1/8) :*: e’ (3/8) :*: f’ (1/8) :*: g’ (1/8)
:*: a’ (1/4) :*: h’ (1/8) :*: c’’ (1/2))

phrase1 = c’ (1/4) :*: d’ (1/4) :*: e’ (1/4) :*: c’ (1/4)
phrase2 = e’ (1/4) :*: f’ (1/4) :*: g’ (1/2)
phrase3 = g’ (1/8) :*: a’ (1/8) :*: g’ (1/8) :*: f’ (1/8) :*: e’ (1/4) :*: c’ (1/4)
phrase4 = c’ (1/4) :*: (transpose (-12) (g’ (1/4))) :*: c’’ (1/2)

verse = rep phrase1 :*: rep phrase2 :*: rep phrase3 :*: rep phrase4
infinite = verse :*: infinite
brotherJacob = Tempo andante (Instr VoiceAahs

(entry (0/1) infinite :+: entry (2/1) (transpose 12 infinite) :+:
entry (4/1) infinite :+: entry (6/1) infinite))

Figure 2: Data type for music; a rhythmically swinging C-major scale; the canon “Brother Jacob” for four voices

data Nucleotide = A | C | G | T

data AminoAcid = Asn -- Asparagin
| Lys -- Lysin
| ... -- and so forth

type DNA = [Nucleotide]
type Protein = [AminoAcid]
type Codon = (Nucleotide, Nucleotide, Nucleotide)

genCode :: Codon -> AminoAcid
genCode (A, A, A) = Lys; genCode (A, A, G) = Lys; genCode (A, A, C) = Asn -- and so forth

ribosome :: DNA -> Protein -- the ribosome always starts at ATG
ribosome (A : T : G : x) = Met : map genCode (triplets x)

triplets [] = []
triplets (a : b : c : x) = (a, b, c) : triplets x

wc_compl A = T; wc_compl T = A; wc_compl C = G; wc_compl G = C

complSingleStrand [] = []
complSingleStrand (a : x) = wc_compl a : complSingleStrand x

dnaPolymerase x = (x, complSingleStrand x)

Figure 3: The data types of the living cell; the genetic code and its use in gene translation; Watson-Crick complement and
DNA polymerisation

list_recursion :: a -> (b -> [b] -> a -> a) -> [b] -> a
list_recursion base extend = rec

where rec [] = base
rec (a : x) = extend a x (rec x)

insert :: (Ord a) => a -> [a] -> [a]
insert a = list_recursion [a] step

where step b x sol = if a <= b then a : b : x else b : sol

Figure 4: The scheme of structural recursion on lists

dp_editdistance alg x y = axiom (alignment!)
where (nil, repscore, delscore, insscore, select) = alg

alignment = tabulated (
empty nil |||
repscore <<< xbase -˜˜ (alignment!) ˜˜- ybase |||
delscore <<< xbase -˜˜ (alignment!) |||
insscore <<< (alignment!) ˜˜- ybase ... select)

Figure 5: The dynamic programming algorithm for computing the edit distance of two sequences; select is a choice function
provided by the scoring algebra.

