
Efficient Implementation of Lazy Suffix Trees

Robert Giegerich1, Stefan Kurtz1?, and Jens Stoye2

1 Technische Fakultät, Universität Bielefeld, Postfach 100 131, D-33501 Bielefeld,
Germany.

{robert,kurtz}@techfak.uni-bielefeld.de
2 German Cancer Research Center (DKFZ), Theoretical Bioinformatics (H0300),

Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
j.stoye@dkfz-heidelberg.de

Proc. of 3rd Workshop on Algorithm Engineering

page 30-42, London, UK, July 1999,

Lecture Notes in Computer Science 1668, Springer Verlag

Abstract. We present an efficient implementation of a write-only top-
down construction for suffix trees. Our implementation is based on a
new, space-efficient representation of suffix trees which requires only 12
bytes per input character in the worst case, and 8.5 bytes per input
character on average for a collection of files of different type. We show
how to efficiently implement the lazy evaluation of suffix trees such that
a subtree is evaluated not before it is traversed for the first time. Our
experiments show that for the problem of searching many exact patterns
in a fixed input string, the lazy top-down construction is often faster and
more space efficient than other methods.

1 Introduction

Suffix trees are efficiency boosters in string processing. The suffix tree of a text
t is an index structure that can be computed and stored in O(|t|) time and
space. Once constructed, it allows to locate any substring w of t in O(|w|) steps,
independent of the size of t. This instant access to substrings is most convenient
in a “myriad” [2] of situations, and in Gusfield’s recent book [9], about 70 pages
are devoted to applications of suffix trees.

While suffix trees play a prominent role in algorithmics, their practical use
has not been as widespread as one should expect (for example, Skiena [16] has
observed that suffix trees are the data structure with the highest need for better
implementations). The following pragmatic considerations make them appear
less attractive:

– The linear-time constructions by Weiner [18], McCreight [15] and Ukko-
nen [17] are quite intricate to implement. (See also [7] which reviews these
methods and reveals relationships much closer than one would think.)

– Although asymptotically optimal, their poor locality of memory reference [6]
causes a significant loss of efficiency on cached processor architectures.

? Partially supported by DFG-grant Ku 1257/1-1.

– Although asymptotically linear, suffix trees have a reputation of being greedy
for space. For example, the efficient representation of McCreight [15] requires
28 bytes per input character in the worst case.

– Due to these facts, for many applications, the construction of a suffix tree
does not amortize. For example, if a text is to be searched only for a very
small number of patterns, then it is usually better to use a fast and simple
online method, such as the Boyer-Moore-Horspool algorithm [11], to search
the complete text anew for each pattern.

However, these concerns are alleviated by the following recent developments:

– In [6], Giegerich and Kurtz advocate the use of a write-only, top-down con-
struction, referred to here as the wotd -algorithm. Although its time efficiency
is O(n log n) in the average and even O(n2) in the worst case (for a text of
length n), it is competitive in practice, due to its simplicity and good locality
of memory reference.

– In [12], Kurtz developed a space-efficient representation that allows to com-
pute suffix trees in linear time in 46% less space than previous methods. As
a consequence, suffix trees for large texts, e.g. complete genomes, have been
proved to be manageable.

– The question about amortizing the cost of suffix tree construction is almost
eliminated by incrementally constructing the tree as demanded by its queries.
This possibility was already hinted at in [6], where the wotd -algorithm was
called “lazytree” for this reason.

When implementing the wotd -algorithm in a lazy functional programming lan-
guage, the suffix tree automatically becomes a lazy data structure, but of course,
the general overhead of using a lazy language is incurred. In the present paper, we
explicate how a lazy and an eager version of the wotd -algorithm can efficiently be
implemented in an imperative language. Our implementation technique avoids a
constant alphabet factor in the running time.1 It is based on a new space efficient
suffix tree representation, which requires only 12n bytes of space in the worst
case. This is an improvement of 8n bytes over the most space efficient previous
representation, as developed in [12]. Experimental results show that our imple-
mentation technique leads to programs that are superior to previous ones in
many situations. For example, when searching 0.1n patterns of length between
10 and 20 in a text of length n, the lazy wotd -algorithm (wotdlazy, for short)
is on average almost 35% faster and 30% more space efficient than a linked list
implementation of McCreight’s [15] linear time suffix tree algorithm. wotdlazy

is almost 13% faster and 50% more space efficient than a hash table implemen-
tation of McCreight’s linear time suffix tree algorithm, eight times faster and

1 The suffix array construction of [13] and the linear time suffix tree construction of [5]
also do not have the alphabet factor in their running time. For the linear time suffix
tree constructions of [15, 17, 18] the alphabet factor can be avoided by employing
hashing techniques, see [15], however, for the cost of using considerably more space,
see [12].

2

10% more space efficient than a program based on suffix arrays [13], and wotd-

lazy is 99 times faster than the iterated application of the Boyer-Moore-Horspool
algorithm [11]. The lazy wotd -algorithm makes suffix trees also applicable in con-
texts where the expected number of queries to the text is small relative to the
length of the text, with an almost immeasurable overhead compared to its eager
variant wotdeager in the opposite case. Beside its usefulness for searching string
patterns, wotdlazy is interesting for other problems (see the list in [9]), such as
exact set matching, the substring problem for a database of patterns, the DNA
contamination problem, common substrings of more than two strings, circular
string linearization, or computation of the q-word distance of two strings.

Documented source code, test data, and complete results of our experiments
are available at http://www.techfak.uni-bielefeld.de/˜kurtz/Software/wae99.tar.gz.

2 The wotd-Suffix Tree Construction

2.1 Terminology

Let Σ be a finite ordered set of size k, the alphabet. Σ∗ is the set of all strings over
Σ, and ε is the empty string. We use Σ+ to denote the set Σ∗\{ε} of non-empty
strings. We assume that t is a string over Σ of length n ≥ 1 and that $ ∈ Σ is a
character not occurring in t. For any i ∈ [1, n+1], let si = ti . . . tn$ denote the ith
non-empty suffix of t$. A Σ+-tree T is a finite rooted tree with edge labels from
Σ+. For each a ∈ Σ, every node u in T has at most one a-edge u av- w for some
string v and some node w. An edge leading to a leaf is a leaf edge. Let u be a node
in T . We denote u by w if and only if w is the concatenation of the edge labels
on the path from the root to u. ε is the root . A string s occurs in T if and only if
T contains a node sv, for some string v. The suffix tree for t, denoted by ST(t),
is the Σ+-tree T with the following properties: (i) each node is either a leaf or
a branching node, and (ii) a string w occurs in T if and only if w is a substring
of t$. There is a one-to-one correspondence between the non-empty suffixes of
t$ and the leaves of ST(t). For each leaf sj we define `(sj) = {j}. For each
branching node u we define `(u) = {j | u v- uv is an edge in ST(t), j ∈ `(uv)}.
`(u) is the leaf set of u.

2.2 A Review of the wotd-Algorithm

The wotd -algorithm adheres to the recursive structure of a suffix tree. The idea
is that for each branching node u the subtree below u is determined by the
set of all suffixes of t$ that have u as a prefix. In other words, if we have the
set R(u) := {s | us is a suffix of t$} of remaining suffixes available, we can
evaluate the node u. This works as follows: at first R(u) is divided into groups
according to the first character of each suffix. For any character c ∈ Σ, let
group(u, c) := {w ∈ Σ∗ | cw ∈ R(u)} be the c-group of R(u). If for some
c ∈ Σ, group(u, c) contains only one string w, then there is a leaf edge labeled
cw outgoing from u. If group(u, c) contains at least two strings, then there is an

3

edge labeled cv leading to a branching node ucv, where v is the longest common
prefix (lcp, for short) of all strings in group(u, c). The child ucv can then be
evaluated from the set R(ucv) = {w | vw ∈ group(u, c)} of remaining suffixes.

The wotd -algorithm starts by evaluating the root from the set R(root) of all
suffixes of t$. All nodes of ST(t) can be evaluated recursively from the corre-
sponding set of remaining suffixes in a top-down manner.

Example Consider the input string t = abab. The wotd -algorithm for t works
as follows: At first, the root is evaluated from the set R(root) of all non-empty
suffixes of the string t$, see the first five columns in Fig. 1. The algorithm
recognizes 3 groups of suffixes. The a-group, the b-group, and the $-group. The a-
group and the b-group each contain two suffixes, hence we obtain two unevaluated
branching nodes, which are reached by an a-edge and by a b-edge. The $-group
is singleton, so we obtain a leaf reached by an edge labeled $. To evaluate the
unevaluated branching node corresponding to the a-group, one first computes
the longest common prefix of the remaining suffixes of that group. This is b in
our case. So the a-edge from the root is labeled by ab, and the remaining suffixes
ab$ and $ are divided into groups according to their first character. Since this
is different, we obtain two singleton groups of suffixes, and thus two leaf edges
outgoing from ab. These leaf edges are labeled by ab$ and $. The unevaluated
branching node corresponding to the b-group is evaluated in a similar way, see
Fig. 1.

a b a b $
b a b $
a b $
b $
$
︸ ︷︷ ︸

R(root)

⇒

a $
b

$
︸︷︷︸

R(ab)

a $
b

$
︸︷︷︸

R(b)

c

HHHHHHHHj

���������

ab $

c

c

?

b

⇒

cPPPPPPPPPPPq

�����������)

ab

c

@
@

@
@R

�
�

�
�	

ab$

c

$

c

$

c

c

?

b

c

@
@

@
@R

�
�

�
�	

ab$

c

$

c

Fig. 1. The write-only top-down construction of ST(abab)

4

2.3 Properties of the wotd-Algorithm

The distinctive property of the wotd -algorithm is that the construction proceeds
top-down. Once a node has been constructed, it needs not be revisited in the
construction of other parts of the tree (unlike the linear-time constructions of
[5, 15, 17, 18]). As the order of subtree construction is independent otherwise, it
may be arranged in a demand-driven fashion, obtaining the lazy implementation
detailed in the next section.

The top-down construction has been mentioned several times in the litera-
ture [1, 6, 8, 14], but at the first glance, its worst case running time of O(n2) is
disappointing. However, the expected running time is O(n logk n) (see e.g. [6]),
and experiments in [6] suggest that the wotd -algorithm is practically linear for
moderate size strings. This can be explained by the good locality behavior: the
wotd -algorithm has optimal locality on the tree data structure. In principle,
more than a “current path” of the tree needs not be in memory. With respect
to text access, the wotd -algorithm also behaves very well: For each subtree, only
the corresponding remaining suffixes are accessed. At a certain tree level, the
number of suffixes considered will be smaller than the number of available cache
entries. As these suffixes are read sequentially, practically no further cache misses
will occur. This point is reached earlier when the branching degree of the tree
nodes is higher, since the suffixes split up more quickly. Hence, the locality of
the wotd -algorithm improves for larger values of k.

Aside from the linear constructions already mentioned, there are O(n log n)
time suffix tree constructions (e.g. [3,8]) which are based on Hopcroft’s partition-
ing technique [10]. While these constructions are faster in terms of worst-case
analysis, the subtrees are not constructed independently. Hence they do not share
the locality of the wotd -algorithm, nor do they allow for a lazy implementation.

3 Implementation Techniques

This section describes how the wotd -algorithm can be implemented in an eager
language. The “simulation” of lazy evaluation in an eager language is not a very
common approach. Unevaluated parts of the data structure have to be repre-
sented explicitly, and the traversal of the suffix tree becomes more complicated
because it has to be merged with the construction of the tree. We will show,
however, that by a careful consideration of efficiency matters, one can end up
with a program which is not only more efficient and flexible in special applica-
tions, but which performs comparable to the best existing implementations of
index-based exact string matching algorithms in general.

We first describe the data structure that stores the suffix tree, and then we
show how to implement the lazy and eager evaluation, including the additional
data structures.

3.1 The Suffix Tree Data Structure

To implement a suffix tree, we basically have to represent three different items:
nodes, edges and edge labels. To describe our representation, we define a total

5

order ≺ on the children of a branching node: Let u and v be two different nodes
in ST(t) which are children of the same branching node. Then u ≺ v if and only
if min `(u) < min `(v). Note that leaf sets are never empty and `(u) ∩ `(v) = ∅.
Hence ≺ is well defined.

Let us first consider how to represent the edge labels. Since an edge label v is a
substring of t$, it can be represented by a pair of pointers (i, j) into t′ = t$, such
that v = t′i . . . t′j . In case the edge is a leaf edge, we have j = n+1, i.e., the right
pointer j is redundant. In case the edge leads to a branching node, it also suffices
to only store a left pointer, if we choose it appropriately: Let u v- uv be an edge
in ST(t). We define lp(uv) := min `(uv)+|u|, the left pointer of uv. Now suppose
that uv is a branching node and i = lp(uv). Assume furthermore that uvw is the
smallest child of uv w.r.t. the relation ≺. Hence we have min `(uv) = min `(uvw),
and thus lp(uvw) = min `(uvw)+ |uv| = min `(uv)+ |u|+ |v| = lp(uv)+ |v|. Now
let r = lp(uvw). Then v = ti . . . ti+|v|−1 = ti . . . tlp(uv)+|v|−1 = ti . . . tlp(uvw)−1 =
ti . . . tr−1. In other words, to retrieve edge labels in constant time, it suffices to
store the left pointer for each node (including the leaves). For each branching
node u we additionally need constant time access to the child of uv with the
smallest left pointer. This access is provided by storing a reference firstchild (u)
to the first child of u w.r.t. ≺. The lp- and firstchild -values are stored in a
single integer table T . The values for children of the same node are stored in
consecutive positions ordered w.r.t. ≺. Thus, only the edges to the first child
are stored explicitly. The edges to all other children are implicit. They can be
retrieved by scanning consecutive positions in table T .

Any node u is referenced by the index in T where lp(u) is stored. To decode
the tree representation, we need two extra bits: A leaf bit marks an entry in T
corresponding to a leaf, and a rightmost child bit marks an entry corresponding
to a node which does not have a right brother w.r.t. ≺. Fig. 2 shows a table T
representing ST(abab).

1 6
︸ ︷︷ ︸

ab

2 8
︸ ︷︷ ︸

b

5
︸ ︷︷ ︸

$

3
︸ ︷︷ ︸

abab$

5
︸ ︷︷ ︸

ab$

3
︸ ︷︷ ︸

bab$

5
︸ ︷︷ ︸

b$

Fig. 2. A table T representing ST(abab) (see Fig. 1). The input string as well as T is
indexed from 1. The entries in T corresponding to leaves are shown in grey boxes. The
first value for a branching node u is lp(u), the second is firstchild (u). The leaves $, ab$,
and b$ are rightmost children

3.2 The Evaluation Process

The wotd -algorithm is best viewed as a process evaluating the nodes of the
suffix tree, starting at the root and recursively proceeding downwards into the
subtrees.

6

We first describe how an unevaluated node u of ST(t) is stored. For the
evaluation of u, we need access to the set R(u) of remaining suffixes. Therefore
we employ a global array suffixes which contains pointers to suffixes of t$. For
each unevaluated node u, there is an interval in suffixes which stores pointers to
all the starting positions in t$ of suffixes in R(u), ordered by descending suffix-
length from left to right. R(u) is then represented by the two boundaries left(u)
and right(u) of the corresponding interval in suffixes. The boundaries are stored
in the two integers reserved in table T for the branching node u. To distinguish
evaluated and unevaluated nodes, we use a third bit, the unevaluated bit.

Now we can describe how u is evaluated: The edges outgoing from u are
obtained by a simple counting sort [4], using the first character of each suffix
stored in the interval [left(u), right(u)] of the array suffixes as the key in the
counting phase. Each character c with count greater than zero corresponds to
a c-edge outgoing from u. Moreover, the suffixes in the c-group determine the
subtree below that edge. The pointers to the suffixes of the c-group are stored in
a subinterval, in descending order of their length. To obtain the complete label
of the c-edge, the lcp of all suffixes in the c-group is computed. If the c-group
contains just one suffix s, then the lcp is s itself. If the c-group contains more
than one suffix, then a simple loop tests for equality of the characters tsuffixes[i]+j

for j = 1, 2, . . . and for all start positions i of the suffixes in the c-group. As soon
as an inequality is detected, the loop stops and j is the length of the lcp of the
c-group.

The children of u are stored in table T , one for each non-empty group. A
group with count one corresponds to a subinterval of width one. It leads to a
leaf, say s, for which we store lp(s) in the next available position of table T .
lp(s) is given by the left boundary of the group. A group of size larger than
one leads to an unevaluated branching node, say v, for which we store left(v)
and right(v) in the next two available positions of table T . In this way, all
nodes with the same father u are stored in consecutive positions. Moreover,
since the suffixes of each interval are in descending order of their length, the
children are ordered w.r.t. the relation ≺. The values left(v) and right(v) are
easily obtained from the counts in the counting sort phase, and setting the leaf-
bit and the rightmost-child bit is straightforward. To prepare for the (possible)
evaluation of v, the values in the interval [left(v), right(v)] of the array suffixes

are incremented by the length of the corresponding lcp. Finally, after all successor
nodes of u are created, the values of left(u) and right(u) in T are replaced by
the integers lp(u) := suffixes [left(u)] and firstchild(u), and the unevaluated bit
for u is deleted.

The nodes of the suffix tree can be evaluated in an arbitrary order respect-
ing the father/child relation. Two strategies are relevant in practice: The eager

strategy evaluates nodes in a depth-first and left-to-right traversal, as long as
there are unevaluated nodes remaining. The program implementing this strat-
egy is called wotdeager in the sequel. The lazy strategy evaluates a node not
before the corresponding subtree is traversed for the first time, for example by

7

a procedure searching for patterns in the suffix tree. The program implementing
this strategy is called wotdlazy in the sequel.

3.3 Space Requirement

The suffix tree representation as described in Sect. 3.1 requires 2q + n integers,
where q is the number of non-root branching nodes. Since q = n−1 in the worst
case, this is an improvement of 2n integers over the best previous representation,
as described in [12]. However, one has to be careful when comparing the 2q + n
representation of Sect. 3.1 with the results of [12]. The 2q + n representation is
tailored for the wotd -algorithm and requires extra working space of 2.5n integers
in the worst case:2 The array suffixes contains n integers, and the counting sort
requires a buffer of the width of the interval which is to be sorted. In the worst
case, the width of this interval is n − 1. Moreover, wotdeager needs a stack of
size up to n/2, to hold references to unevaluated nodes.

A careful memory management, however, allows to save space in practice.
Note that during eager evaluation, the array suffixes is processed from left to
right, i.e., it contains a completely processed prefix. Simultaneously, the space
requirement for the suffix tree grows. By reclaiming the completely processed
prefix of the array suffixes for the table T , the extra working space required by
wotdeager is only little more than one byte per input character, see Table 1. For
wotdlazy, it is not possible to reclaim unused space of the array suffixes , since
this is processed in an arbitrary order. As a consequence, wotdlazy needs more
working space.

4 Experimental Results

For our experiments, we collected a set of 11 files of different sizes and types.
We restricted ourselves to 7-bit ASCII files, since the suffix tree application
we consider (searching for patterns) does not make sense for binary files. Our
collection consists of the following files: We used five files from the Calgary
Corpus: book1, book2, paper1, bib, progl. The former three contain english text,
and the latter two formal text (bibliographic items and lisp programs). We added
two files (containing english text) from the Canterbury Corpus:3 lcet10 and
alice29. We extracted a section of 500,000 residues from the PIR protein sequence
database, denoted by pir500. Finally, we added three DNA sequences: ecoli500

(first 500,000 bases of the ecoli genome), ychrIII (chromosome III of the yeast
genome), and vaccg (complete genome of the vaccinia virus).

2 Moreover, the wotd -algorithm does not run in linear worst case time, in contrast to
e.g. McCreight’s algorithm [15] which can be used to construct the 5n representations
of [12] in constant working space. It is not clear to us whether it is possible to
construct the 2q + n representation of this paper within constant working space, or
in linear time. In particular, it is not possible to construct it with McCreight’s [15]
or with Ukkonen’s algorithm [17], see [12].

3 Both corpora can be obtained from http://corpus.canterbury.ac.nz

8

All programs we consider are written in C. We used the ecgs compiler, release
1.1.2, with optimizing option –O3. The programs were run on a Computer with a
400 MHz AMD K6-II Processor, 128 MB RAM, under Linux. On this computer
each integer and each pointer occupies 4 bytes.

In a first experiment we ran three different programs constructing suffix trees:
wotdeager, mccl, and mcch. The latter two implement McCreight’s suffix tree
construction [15]. mccl computes the improved linked list representation, and
mcch computes the improved hash table representation of the suffix tree, as
described in [12]. Table 1 shows the running times and the space requirements.
We normalized w.r.t. the length of the files. That is, we show the relative time
(in seconds) to process 106 characters (i.e., rtime = (106 · time)/n), and the
relative space requirement in bytes per input character. For wotdeager we show
the space requirement for the suffix tree representation (stspace), as well as the
total space requirement including the working space. mccl and mcch only require
constant extra working space. The last row of Table 1 shows the total length of
the files, and the averages of the values of the corresponding columns. In each
row a grey box marks the smallest relative time and the smallest relative space
requirement, respectively.

wotdeager mccl mcch

file n k rtime stspace space rtime space rtime space

book1 768771 82 2.82 8.01 9.09 3.55 10.00 2.55 14.90

book2 610856 96 2.60 8.25 9.17 2.90 10.00 2.31 14.53

lcet10 426754 84 2.48 8.25 9.24 2.79 10.00 2.30 14.53

alice29 152089 74 1.97 8.25 9.43 2.43 10.01 2.17 14.54

paper1 53161 95 1.69 8.37 9.50 1.88 10.02 1.88 14.54

bib 111261 81 1.98 8.30 9.17 2.07 9.61 1.89 14.54

progl 71646 87 2.37 9.19 10.42 1.54 10.41 1.95 14.54

ecoli500 500000 4 3.32 9.10 10.46 2.42 12.80 2.84 17.42

ychrIII 315339 4 3.20 9.12 10.70 2.28 12.80 2.70 17.41

vaccg 191737 4 3.70 9.22 11.07 2.14 12.81 2.56 17.18

pir500 500000 20 3.06 7.81 8.61 5.10 10.00 2.58 15.26

3701614 2.66 8.53 9.71 2.65 10.77 2.34 15.40

Table 1. Time and space requirement for different programs constructing suffix trees

All three programs have similar running times. wotdeager and mcch show a
more stable running time than mccl. This may be explained by the fact that the
running time of wotdeager and mcch is independent of the alphabet size. For a
thorough explanation of the behavior of mccl and mcch we refer to [12]. While
wotdeager does not give us a running time advantage, it is more space efficient
than the other programs, using 1.06 and 5.69 bytes per input character less than
mccl and mcch, respectively. Note that the additional working space required
for wotdeager is on average only 1.18 bytes per input character.

9

In a second experiment we studied the behavior of different programs search-
ing for many exact patterns in an input string, a scenario which occurs for ex-
ample in genome-scale sequencing projects, see [9, Sect. 7.15]. For the programs
of the previous experiment, and for wotdlazy, we implemented search functions.
wotdeager and mccl require O(km) time to search for a pattern string of length
m. mcch requires O(m) time. Since the pattern search for wotdlazy is merged
with the evaluation of suffix tree nodes, we cannot give a general statement
about the running time of the search. We also considered suffix arrays, using
the original program code developed by Manber and Myers [13, page 946]. The
suffix array program, referred to by mamy, constructs a suffix array in O(n log n)
time. Searching is performed in O(m + log n) time. The suffix array requires 5n
bytes of space. For the construction, additionally 4n bytes of working space are
required. Finally, we also considered the iterated application of an on-line string
searching algorithm, our own implementation of the Boyer-Moore-Horspool al-
gorithm [11], referred to by bmh. The algorithm takes O(n + m) expected time
per search, and uses O(m) working space.

We generated patterns according to the following strategy: For each input
string t of length n we randomly sampled ρn substrings s1, s2, . . . , sρn of different
lengths from t. The proportionality factor ρ was between 0.0001 and 1. The
lengths were evenly distributed over the interval [10, 20]. For i ∈ [1, ρn], the
programs were called to search for pattern pi, where pi = si, if i is even, and pi is
the reverse of si, otherwise. Reversing a string si simulates the case that a pattern
search is often unsuccessful. Table 2 shows the relative running times for ρ = 0.1.
For wotdlazy we show the space requirement for the suffix tree after all ρn pattern
searches have been performed (stspace), and the total space requirement. For
mamy, bmh, and the other three programs the space requirement is independent
of ρ. Thus for the space requirement of wotdeager, mccl, and mcch see Table 1.
The space requirement of bmh is marginal, so it is omitted in Table 2.

Except for the DNA sequences, wotdlazy is the fastest and most space efficient
program for ρ = 0.1. This is due to the fact that the pattern searches only
evaluate a part of the suffix tree. Comparing the stspace columns of Tables 1 and
2 we can estimate that for ρ = 0.1 about 40% of the suffix tree is evaluated. We
can also deduce that wotdeager performs pattern searches faster than mcch, and
much faster than mccl. This can be explained as follows: searching for patterns
means that for each branching node the list of successors is traversed, to find
a particular edge. However, in our suffix tree representation, the successors are
found in consecutive positions of table T . This means a small number of cache
misses, and hence the good performance. It is remarkable that wotdlazy is more
space efficient and eight times faster than mamy. Of course, the space advantage
of wotdlazy is lost with a larger number of patterns. In particular, for ρ ≥ 0.3
mamy is the most space efficient program. Figs. 3 and 4 give a general overview,
how ρ influences the running times. Fig. 3 shows the average relative running
time for all programs and different choices of ρ for ρ ≤ 0.005. Fig. 4 shows the
average relative running time for all programs except bmh for all values of ρ. We
observe that wotdlazy is the fastest program for ρ ≤ 0.3, and wotdeager is the

10

wotdlazy wotdeager mccl mcch mamy bmh

file n k rtime stspace space rtime rtime rtime rtime space rtime

book1 768771 82 3.17 3.14 7.22 3.37 5.70 3.19 20.73 8.04 413.60

book2 610856 96 2.85 3.12 7.22 3.14 5.17 2.96 21.23 8.06 298.25

lcet10 426754 84 2.65 3.07 7.22 3.07 4.52 2.88 20.55 8.07 206.40

alice29 152089 74 2.04 3.13 7.23 2.43 3.62 2.70 17.10 8.14 74.76

paper1 53161 95 1.50 3.23 7.65 2.07 2.82 2.26 9.41 8.68 23.70

bib 111261 81 1.89 3.06 7.23 2.43 3.06 2.43 14.11 8.24 47.28

progl 71646 87 1.81 2.91 7.24 2.79 2.37 2.37 14.52 8.42 32.24

ecoli500 500000 4 3.60 3.71 8.02 3.82 3.36 3.68 24.84 8.52 724.56

ychrIII 315339 4 3.23 3.84 8.02 3.62 3.17 3.49 26.73 8.83 453.39

vaccg 191737 4 2.97 3.81 8.03 3.39 2.87 3.34 23.73 8.34 291.13

pir500 500000 20 2.46 3.55 7.62 3.66 6.34 3.10 29.38 8.06 248.42

3701614 2.56 3.32 7.52 3.07 3.91 2.94 20.21 8.31 255.79

Table 2. Time and space requirement for searching 0.1n exact patterns

fastest program for ρ ≥ 0.4. bmh is faster than wotdlazy only for ρ ≤ 0.0003.
Thus the index construction performed by wotdlazy already amortizes for a very
small number of pattern searches.

We also performed some tests on two larger files (english text) of length 3 MB
and 5.6 MB, and we observed the following:

– The relative running time for wotdeager slightly increases, i.e. the superlin-
earity in the complexity becomes visible. As a consequence, mcch becomes
faster than wotdeager (but still uses 50% more space).

– With ρ approaching 1, the slower suffix tree construction of wotdeager and
wotdlazy is compensated for by a faster pattern search procedure, so that
there is a running time advantage over mcch.

5 Conclusion

We have developed efficient implementations of the write-only top-down suffix
tree construction. These construct a representation of the suffix tree, which re-
quires only 12n bytes of space in the worst case, plus 10n bytes of working space.
The space requirement in practice is only 9.71n bytes on average for a collection
of files of different type. The time and space overhead of the lazy implementation
is very small. Our experiments show that for searching many exact patterns in
an input string, the lazy algorithm is the most space and time efficient algorithm
for a wide range of input values.

Acknowledgements We thank Gene Myers for providing a copy of his suffix array
code.

11

0

5

10

15

20

25

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

bmh
mamy

mccl
mcch

wotdeager
wotdlazy

Fig. 3. Average relative running time (in seconds) for different values of ρ ∈ [0, 0.005]

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

mamy
mccl

mcch
wotdeager

wotdlazy

Fig. 4. Average relative running time (in seconds) for different values of ρ ∈ [0, 1]

12

References

1. A. Andersson and S. Nilsson. Efficient Implementation of Suffix Trees. Software—
Practice and Experience, 25(2):129–141, 1995.

2. A. Apostolico. The Myriad Virtues of Subword Trees. In Combinatorial Algorithms
on Words, pages 85–96. Springer Verlag, 1985.

3. A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin. Parallel
Construction of a Suffix Tree with Applications. Algorithmica, 3:347–365, 1988.

4. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

5. M. Farach. Optimal Suffix Tree Construction with Large Alphabets. In Proc. of the
38th Annual Symposium on the Foundations of Computer Science (FOCS), 1997.

6. R. Giegerich and S. Kurtz. A Comparison of Imperative and Purely Functional
Suffix Tree Constructions. Science of Computer Programming, 25(2-3):187–218,
1995.

7. R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A Unifying
View of Linear-Time Suffix Tree Constructions. Algorithmica, 19:331–353, 1997.

8. D. Gusfield. An “Increment-by-one” Approach to Suffix Arrays and Trees. Report
CSE-90-39, Computer Science Division, University of California, Davis, 1990.

9. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

10. J. Hopcroft. An O(n log n) Algorithm for Minimizing States in a Finite Automaton.
In Proceedings of an International Symposium on the Theory of Machines and
Computations, pages 189–196. Academic Press, New York, 1971.

11. R.N. Horspool. Practical Fast Searching in Strings. Software—Practice and Expe-
rience, 10(6):501–506, 1980.

12. S. Kurtz. Reducing the Space Requirement of Suffix Trees. Software—Practice
and Experience, 1999. Accepted for publication.

13. U. Manber and E.W. Myers. Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, 22(5):935–948, 1993.

14. H.M. Martinez. An Efficient Method for Finding Repeats in Molecular Sequences.
Nucleic Acids Res., 11(13):4629–4634, 1983.

15. E.M. McCreight. A Space-Economical Suffix Tree Construction Algorithm. Journal
of the ACM, 23(2):262–272, 1976.

16. S. S. Skiena. Who is Interested in Algorithms and Why? Lessons from the Stony
Brook Algorithms Repository. In Proceedings of the 2nd Workshop on Algorithm
Engineering (WAE), pages 204–212, 1998.

17. E. Ukkonen. On-line Construction of Suffix-Trees. Algorithmica, 14(3), 1995.
18. P. Weiner. Linear Pattern Matching Algorithms. In Proceedings of the 14th IEEE

Annual Symposium on Switching and Automata Theory, pages 1–11, The Univer-
sity of Iowa, 1973.

13

