
An Algebraic Dynamic Programming Approach

to the Analysis of Recombinant DNA Sequences

Robert Giegerich∗ Stefan Kurtz† Georg F. Weiller‡

IN PROCEEDINGS OFWORKSHOP ONALGORITHMIC ASCPECTS

OF ADVANCED PROGRAMMING LANGUAGES (WAAAPL), PARIS,
SEPTEMBER1999

1 Introduction

1.1 From Biosequences to Structure to Function

Dynamic programming (DP, for short) is a fundamental programming technique, applicable to great advan-
tage whenever the input to a problem spawns an exponential search space in a structurally recursive fashion,
and solutions to subproblems adhere to an optimality principle. No wonder that DP is the predominant
paradigm in computational (molecular) biology. Sequence data—DNA, RNA, and proteins—are determined
on an industrial scale today. The desire to give a meaning to these molecular data gives rise to an ever in-
creasing number of sequence analysis tasks. Given the mass of these data and the length of these sequences
(3 · 106 bases for a bacterial genome,3 · 109 for the human genome), program efficiency is crucial. DP is
used for assembling DNA sequence data from the fragments that are delivered by the automated sequencing
machines [1], and to determine the intron/exon structure of genes [3]. It is used to infer function of proteins
by homology to other proteins with known function [10, 11], and to determine the secondary structure of
functional RNA genes or regulatory elements [15]. In some areas, DP problems arise in such variety that a
specific code generation system for implementing the typical DP recurrences has been developed [2]. This
system, however, does not support the development or validation of these recurrences.

1.2 Outline of Algebraic Dynamic Programming

The systematic development of DP solutions for problems in computational biology has been recently ad-
dressed by Giegerich [4]. There, an algebraic approach to dynamic programming (ADP) was developed
and applied to the problem of folding an RNA sequence into its secondary structure. Here we will adapt
ADP to the problem of comparingtwo sequences in the edit distance model. ADP is based on the following
principles:

1. The analysis problem at hand is conceptually split into astructure recognitionand astructure evalua-
tion phase. Recognized structures are represented by an algebraic datatypeS. Evaluation is specified
in terms of a particularS-algebra.

2. A subset of well-formed structures inS is distinguished by atree grammar. We require that

∗Technische Fakultät, Universiẗat Bielefeld, Postfach 100 131, 33501 Bielefeld, Germany, E-mail: robert@techfak.uni-bielefeld.de,
partially supported by a grant from the Australian National University

†Technische Fakultät, Universiẗat Bielefeld, Postfach 100 131, 33501 Bielefeld, Germany, E-mail: kurtz@techfak.uni-bielefeld.de,
partially supported by DFG-grant Ku 1257/1-1

‡Bioinformatics Laboratory, Research School of Biological Science, Australian National University, Canberra, ACT 0200, Australia,
E-mail: weiller@rsbs.anu.edu.au

77

• structure recognition findsall and only allwell-formed structures,

• structure recognition constructs each such structure exactlyonce,

• structure evaluation is performed only on well-formed structures.

3. By providingparsersfor the terminal symbols andparser combinatorsfor the alternative, applicative,
and sequential operators of the tree grammar, the grammar turns into a recognizer for its language.

4. A recursive recognizer is turned into aDP algorithmby tabulation: Each (recursive) parser is substi-
tuted by a (recursively defined) table of results. This is achieved by an efficiency annotation that does
not change the declarative meaning of the grammar.

5. An abstract evaluatoris a recognizer written in terms of an abstractS-algebra, applying an abstract
choice function to each intermediate result. Instantiated with a concreteS-algebra, it interleaves struc-
ture recognition and evaluation. The concrete evaluator so obtained runs in polynomial time and space,
if the concrete evaluation algebra has a constant time and space bound with respect to each intermediate
result.1

6. DP recurrences, suitable for implementation in any imperative language, can be derived from the
specification by straightforward substitution and program simplification.

1.3 Why Functional Programming Matters

ADP is a program development method, and the resulting program can (and normally will) eventually be
implemented in an imperative language. A functional language likeHaskell, however, makes the approach
much more practical, and even enjoyable. The ADP approach can be completely embedded inHaskell,
allowing us to experiment with executable programs at all stages of development. A wide range of lazy
functional programming techniques is used, the most essential being parser combinators [9], programming
with unknowns, and lazy (though immutable) arrays.

The productivity of the approach results from the modularity (cf. [8]) we achieve by separating structure
recognition from structure evaluation. This advantage only exists in the functional paradigm; it is sacrificed
in the final step (see Section 1.2, Principle 6).

Although ADP is a program development method, and not an equivalence transformation on programs,
it bears some resemblance to deforestation [13], particularly in the form of [5]. The essential speed-up from
exponential to polynomial time complexity, however, is not achieved by deforestation, but by tabulation and
the simultaneous introduction of a choice function that reduces the volume of the intermediate results.

2 Biosequence Comparison in the Edit Distance Model

2.1 Searching for the Signals of Recombination

Comparison of DNA or protein sequences is predominantly done in the edit distance model. Two or more
sequences are rearranged by introducing gaps, in a way that best exhibits their (dis)similarities. The concrete
way in which distance or similarity is measured is expressed by means of a scoring function for matches,
mismatches, and gaps. The scoring function varies from application to application. Sequence similarity is
taken as an indication of homology, and multiple alignments or pairwise distances so obtained are frequently
fed into programs that try to reconstruct phylogenies, i.e., evolutionary relationships of genes or species.

1More precisely, all operations of the algebra may be allowed to have polynomial efficiency, but the choice function is critical and
must have a constant bound on the size of its output.

78

DNA recombinationis an important mechanism in molecular evolution. Genes that have evolved inde-
pendently in different strains of a virus, for example, may recombine in a new strain. This adds the power of
parallel processing to Darwinian evolution, which is otherwise based on trial and error (i.e., random mutation
and selection). In the presence of recombinant DNA, practically all commonly used analysis programs go
wrong. There is no longer a tree-like phylogeny, as different parts of a sequence stem from different ances-
tors. In such a case, the best we can hope for from a tree reconstruction program is to tell us that there is no
clear support for either of several possible trees in the distance data.

But there is a difference between data which are just noisy, and data which carry a clear signal about
recombination events. There are different ways to explicitly search for recombination signals. ThePhylPro
program [14] does so by monitoring patterns of change in the mutual similarities in a multiple sequence
alignment. In this paper, we take a direct approach, applicable to pairwise sequence alignment.

Traditionally, insertions and deletions are seen as random events, independent of their sequence context.
But this is not totally adequate: Insertions and deletions in DNA sequences often stem from recombination
events. The molecular mechanisms of recombination may leave traces in the form of target site duplications
of varying length. Similar repeats may be formed through replication slippage, the other cellular process
responsible for indel formation. Current methods of sequence analysis ignore these signals.

2.2 Extending the Edit Distance Model

Let x and y be two DNA sequences of lengthm and n, respectively. The classical edit distance model
considers the following edit operations:

• R (a
b) denotes thereplacementof nucleotidea in x by b in y. If a = b, this is called amatch, otherwise

aproper replacement.

• I (−u) denotes theinsertionof a non-empty sequenceu of nucleotides intoy, thereby introducing inx
a gap of the same length, i.e., a sequence of|u| dashes.

• D (u
−) denotes thedeletionof a non-empty sequenceu of nucleotides fromx, thereby introducing iny

a gap of the same length, i.e., a sequence of|u| dashes.

As new edit operations, we introduce recombinant deletion and insertion. Lett be a non-empty (but
typically short) sequence of nucleotides that occurs both inx and iny.

• S
(
t−−
tu t

)
denotes arecombinant insertionin y: Following thetarget sitet, present in bothx andy,

a sequenceu of nucleotides is inserted intoy, followed by a new copy oft in y. In x, a gap of the
combined length ofu andt is introduced.

• L
(
tu t
t−−

)
denotes arecombinant deletionfrom x: Following thetarget sitet, present in bothx andy, a

sequenceu of nucleotides is deleted fromx. This requires a second copy oft to follow u in x. In y, a
gap of the combined length ofu andt is introduced.

In both cases, we allow the deleted or inserted sequenceu to be empty, which makes the target site and
its duplication form a tandem repeat inx or y.

Example 1 Here is an alignment ofattcgaa andacgtatacgac:

R
(a
a
)

D
(

t t
−−

)
S

(
c g−−−−−−
c g t a t a c g

)
R

(a
a
)

R
(a
c
)

It shows three replacements, a short deletion, and a recombinant insertion.

79

Proceeding from this operational view of recombination events to the analytic view, we must define the
sequence pattern that can be interpreted in retrospect as a signal left from a recombination.

For any sequencez and anyi ∈ [0, |z|], i↓z denotes the suffix ofz after droppingi symbols from the
beginning ofz. A target site duplication iny is a pair(i, j) such thati↓x = tz andj↓y = tutw for some
t, u, w, z such thatt is not empty. It ismaximalif the first character ofu, w, z is not the same, whenever these
strings are not empty. Atarget site duplication inx is a pair(i, j) such thati↓x = tutw andj↓y = tz for
somet, u, w, z such thatt is not empty. It ismaximalif the first character ofu, w, z is not the same, whenever
these strings are not empty.

Note that several target site duplications may be identified at the same position, differing in the length of
the target sequencet. However, in the following we restrict to maximal duplications, since a longer target site
duplication is to be taken as the stronger signal of a recombination event. We say that a recombinant deletion
is signalledby a maximal target site duplication inx, and a recombinant insertion issignalledby a maximal
target site duplication iny.

3 Computing Optimal Alignments in the Extended Edit Distance Model

3.1 An Algebraic Data Type for Extended Alignments

An alignment ofx andy is traditionally represented by placing the aligned sequences on different lines,
with inserted dashes to denote gaps. Successive dashes insidex are interpreted as an insertion intoy, and
successive dashes insidey as a deletion fromx. The eye of the reader implicitly groups successive dashes into
gaps of maximal length. A slightly more explicit view defines the alignment as a sequence of edit operations,
with the additional restriction that a deletion (resp. insertion) must not immediately follow another deletion
(resp. insertion).

With the new edit operations introduced here, we must resort to an even more explicit notation, marking
target sites and their duplications. We also have to distinguish between gaps resulting from recombinations
and gaps for which such an event is not indicated. We give up the view of a sequence of edit operations in
favor of a recursive datatypeAlignment with a constructor for each edit operation.

type Sequence a = Array Int a -- indexed from 1
type Region = (Int,Int) -- region(i, j) of x denotesxi+1 . . . xj

data Alignment a = R a (Alignment a) a |
D Region (Alignment a) |
I (Alignment a) Region |
S Region (Alignment a) Region Region Region |
L Region Region Region (Alignment a) Region |
Empty

Within the datatypeAlignment , a target site duplicationi↓x = tz, j ↓y = tutw, is represented by
an expression of the formS t azw t u t , whereinazw denotes an alignment of the suffixesz andw,
and the three occurrences oft denote the target site inx and (duplicated) iny. Subwords ofx andy are
represented by their boundaries. Hence each edit operation requires constant space. Ifk = |t| andr = |u|,
then the above expression is actually written as

S (i,i+k) azw (j+k+r,j+k+r+k) (j+k,j+k+r) (j,j+k) .

More space efficient representations are possible, since we only need to storei, j, k, andr.

Example 2 Given a datatypeBase with constantsA, C, G, andT, the expression

R A (D (1,3) (S (3,5) (R A (R A Empty C) A) (7,9) (3,7) (1,3))) A

80

denotes the alignment ofattcgaa andacgtatacgac shown in Example 1. It may be printed in ASCII as

x = a t t c g - - - - - - a a
y = a - - c g t a t a c g a c

R D D S S U U U U T T R R

The third line indicates the edit operation involved. The recombinant insertion is labeled in the formS U
T to indicate the starting target siteS, the insertU, and the duplicated target siteT.

At this point the reader is encouraged to take a look ahead at Section 4. It shows the improvement of
standard alignment algorithms which we go for in the subsequent sections.

3.2 A Grammar for Well-Formed Alignments

The datatypeAlignment is not specific enough to describe exactly all meaningful alignments. For example,
it allows to represent two subsequent insertions, which should rather be merged into a single, longer insertion:

x = a t t c g - - - - - - - - a a -- malformed
y = a - - c g t a t a c g g g a c

R D D S S U U U U T T I I R R

We do not accept a non-recombinant insertion immediately following a recombinant insertion. (We do,
however, accept the opposite order.) It seems accidental to locate a duplicated target site in the middle
of a gap. In such a situation, the alignment should rather show a single (non-recombinant) insertion (left
alignment). Alternatively we might call for a recombinant insertion with a shorter target site (right alignment).

x = a t t c g - - - - - - - - a a x = a t t c g - - - - - - - - a a
y = a - - c g t a t a c g g g a c y = a - - c g t a t a c g g g a c

R D D R R I I I I I I I I R R R D D R S U U U U U U U T R R

It will be the task of the scoring function to choose between the latter two alternatives, while the mal-
formed alignment above will not even be scored.

We introduce a grammar generating exactly the well-formed alignments. Following the discipline of [4],
we use a tree grammar over the datatypeAlignment , see Figure 1. The terminal symbols of this grammar
arebase, region, uregion, denoting a single nucleotide, a non-empty and an arbitrary sequence of nucleotides,
respectively. The nonterminals arealignment, noDel, noIns, andmatch.

A production in this notation should be read as: “An alignment is either amatch, or alternatively adeletion
of some region fromx followed by anoDel, or alternatively aninsertionof someregion in y, followed by a
noIns.”

As easily seen in the grammarnoDelgenerates all alignments that do not start with a deletion. The use of
noDel in the first production prevents successive deletions. Similarly fornoIns. Leaving out the clauses for
recombinant deletions and insertions, this tree grammar expresses the classical edit distance model [10, 11],
used in biosequence analysis as well as in string processing.

The grammar still lacks some syntactic restriction: The three occurrences ofregion in the productions
associated withS andL must all derive the same nucleotide sequence.

We now turn the grammar into a recognizer by defining terminal parsers and parser combinators [9]. For
simplicity (and reasons of space) we assume that the input sequencesx andy, as well as their lengthm and
n are globally known. We do not show how these values are threaded through the functions.

A parser is given a pair of indices(i, j) and returns a list of all well-formed alignments of the suffixi↓x
with the suffixj↓y. Parsers for terminal symbols, however, are applied to one of the input sequences, so in
their case, a call for(i, j) recognizes the subword(i, j) in eitherx or y. There is a parser combinator for

81

alignment → match |

D

region noDel |

I

noIns region

noDel → match |

I

match region

noIns → match |

D

region match

match → E

|

R

base alignment base

|

S

region noIns region uregion region

|

L

region uregion region noDel region

Figure 1: A tree grammar for well-formed alignments

82

the alternative, and for using parser results. Since we have two strings to process, there are two sequential
combinators+˜˜ and˜˜+ . The combinators-˜˜ and˜˜- are special forms of these.2

type Parser b = (Int,Int)->[b] -- all parses of suffix pair

xbase,ybase::Parser a
xbase (i,j) = [x!j | i+1 == j] -- recognize a base fromx
ybase (i,j) = [y!j | i+1 == j] -- recognize a base fromy

region,uregion::Parser (Int,Int)
region (i,j) = [(i,j) | i < j] -- recognize a non-empty region
uregion (i,j) = [(i,j) | i <= j] -- recognize any region

empty::b->(Parser b)
empty v (i,j) = [v | i == m && j == n] -- recognize empty alignment

(|||)::(Parser b)->(Parser b)->(Parser b)
(|||) q r inp = q inp ++ r inp -- alternative

(<<<)::(b->c)->(Parser b)->(Parser c)
(<<<) f q = map f.q -- using parser results

(+˜˜),(˜˜+),(-˜˜),(˜˜-)::(Parser (b->c))->(Parser b)->(Parser c)
(+˜˜) q r (i,j) = [s t | k<-[i..m], s<-q (i,k), t<-r (k,j)]
(˜˜+) q r (i,j) = [s t | k<-[j..n], s<-q (i,k), t<-r (j,k)]
(-˜˜) q r (i,j) = [s t | i < m, s<-q (i,i+1), t<-r (i+1,j)]
(˜˜-) q r (i,j) = [s t | j < n, s<-q (i,j+1), t<-r (j,j+1)]

suchthat::(Parser b)->(b->Bool)->(Parser b)
suchthat q f inp = [s | s <- q inp, f s] -- check property of parser results

axiom::((Int,Int)->b)->b
axiom q = q (0,0) -- declare start symbol of grammar

In the grammar, written as a recognizer, we add syntactic restrictions for maximal target site duplication
to the corresponding productions.

2To explain our ideas it would sometimes suffice to present lessHaskell-code. However, we want to make our paper self-contained
and therefore show the code almost completely.

83

enum_alignments::(Eq a)=>(Sequence a)->(Sequence a)->[Alignment a]
enum_alignments x y = axiom alignment where

alignment = match |||
D <<< region +˜˜ noDel |||
I <<< noIns ˜˜+ region

noDel = match |||
I <<< match ˜˜+ region

noIns = match |||
D <<< region +˜˜ match

match = empty Empty |||
R <<< xbase -˜˜ alignment ˜˜- ybase |||
recombIns |||
recombDel

recombIns = ((S <<< region +˜˜ noIns ˜˜+ region ˜˜+ uregion ˜˜+ region)
‘suchthat‘ targetsiteduplication)
‘suchthat‘ maximality

recombDel = ((L <<< region +˜˜ uregion +˜˜ region +˜˜ noDel ˜˜+ region)
‘suchthat‘ targetsiteduplication)
‘suchthat‘ maximality

3.3 Dynamic Programming = Parsing + Tabulation

The above recognizer is easy to develop, but its associated parser is highly inefficient: Not only is there an
exponential number of well-formed alignments for each pair of input sequences. The recognizer will also
repeatedly parse the same subwords when called from different contexts.

The latter inefficiency is removed by introducing tabulation of intermediate parser results (representing
alignments of suffixes of the two inputs). In other words, we employ DP. In contrast to memoization [7], DP
uses explicitly and statically allocated tables.

type Parsetable b = Array (Int,Int) [b]

tabulated::Parser b->Parsetable b
tabulated q = array ((0,0),(m,n)) [((i,j),q (i,j)) | i<-[0..m],j<-[0..n]]

We modify the previous grammar, such that all parsers that do a non-constant amount of work per call
shall use tabulation. Calling a parser means a table lookup. For reasons of space we only show the parser
alignment . Note that our “efficiency annotation” does not affect the declarative meaning of the grammar.

dp_alignments::(Eq a)=>(Sequence a)->(Sequence a)->[Alignment a]
dp_alignments x y = axiom (alignment!) where

alignment = tabulated (
(match!) |||
D <<< region +˜˜ (noDel!) |||
I <<< (noIns!) ˜˜+ region)

It is folklore knowledge that DP combines recursion and tabulation. After all, DP is normally formu-
lated via matrix recurrences. The remarkable point here is the swiftness of transition, merely by adding the
“keyword” tabulated and a few “! ” to the grammar. The declarative and the operational meaning of the
grammar remain unaffected, while efficiency improves from exponential to polynomial. If we had not been
in love withHaskellbefore, this is where it would have happened.

84

The recognizer specified by this grammar runs inO(n2) space and inO(n6) time, due to the four sequen-
tial combinators in the productions associated with recombinant insertions and deletions.3

3.4 An O(n3) Implementation Using a Precomputed Lookahead

The above parser independently chooses three regions for the target site inx, in y, and for the duplication
site in eitherx or y. Thereafter, those are checked for identity. Its efficiency can be greatly improved by the
following observation: Consider a maximal target site duplicationi↓x = tz, j↓y = tutw. Assume we have
chosen and fixed thecombinedlengthh = |tu| of the target sitet and the insertu. Now for givenx andy,
there is really no variation left for the remaining constituents of the pattern:

• The start positions of the identical subwords must bei, j, andj + h.

• Their lengths are uniquely determined by the maximality condition.

Thus we will modify the parser to guess the positionj+h, and then use a precomputed tablelookahead
to determine the length oft. For each(i, j) ∈ [0,m]×[0, n] this table stores the length of the longest common
prefix of i↓x andj↓y. It is computed and stored inO(n2) time and space. The overall running time of the
recognizer is reduced toO(n3), while the space requirement remainsO(n2). Note that since the three sites
are now chosen as identical subwords of maximal length, this approach obviates the a-posteriori check for
these properties. The resulting grammar is very similar to the grammarab alignments given in Section
3.5.

3.5 The Abstract Evaluator and Evaluation Algebras

According to [4], an abstract evaluator is obtained by abstracting from the constructors of the underlying
datatypeAlignment . Additionally, an abstract choice function is associated with each production, by the
combinator(...) . Such an ensemble of functions of appropriate types constitutes an alignment-algebra.

type Algebra a b
= (b, -- Empty

a->b->a->b, -- R
(Int,Int)->b->b, -- D
b->(Int,Int)->b, -- I
(Int,Int)->(Int,Int)->(Int,Int)->b->(Int,Int)->b, -- L
(Int,Int)->b->(Int,Int)->(Int,Int)->(Int,Int)->b, -- S
[b]->[b]) -- choice function

(...)::Parser b->([b]->c)->(Int,Int)->c
(...) q choice = choice.q -- applying a choice function

The abstract evaluator takes an alignment algebra as an additional parameter and adds the choice function.

3We generally assume thatm ∈ O(n), to simplify asymptotic results.

85

ab_alignments::(Eq a)=>(Algebra a b)->(Sequence a)->(Sequence a)->[b]
ab_alignments alg x y = axiom (alignment!) where

(fE, fR, fD, fI, fL, fS, choice) = alg

alignment = tabulated (
(match!) |||
fD <<< region +˜˜ (noDel!) |||
fI <<< (noIns!) ˜˜+ region ... choice)

noDel = tabulated (
(match!) |||
fI <<< (match!) ˜˜+ region ... choice)

noIns = tabulated (
(match!) |||
fD <<< region +˜˜ (match!) ... choice)

match = tabulated (
empty fE |||
fR <<< xbase -˜˜ (alignment!) ˜˜- ybase |||
(recombIns!) |||
(recombDel!) ... choice)

recombIns = tabulated (r ... choice) where
r (i,j) = [fS t’ noins d u t | l <-[j+1..n-1],

let k = min h (lookahead!(i,l)),
t’<- region (i,i+k),
noins <- noIns!(i+k,l+k),
d <- region (l,l+k),
u <- uregion (j+k,l),
t <- region (j,j+k)]

where h = lookahead!(i,j)

recombDel = tabulated (r ... choice) where
r (i,j) = [fL t u d nodel t’ | l <-[i+1..m-1],

let k = min h (lookahead!(l,j)),
t <- region (i,i+k),
u <- uregion (i+k,l),
d <- region (l,l+k),
nodel <- noDel!(l+k,j+k),
t’<- region (j,j+k)]

where h = lookahead!(i,j)

The virtue of the abstract evaluator is, of course, that it can be called with arbitraryAlignment algebras:
Theenumeration algebrais trivially given by the constructors of theAlignment datatype.

enum_alg::Algebra a (Alignment a)
enum_alg = (Empty, R, D, I, L, S, id)

Thecounting algebramay be used to determine the number of well-formed alignments (without calcu-
lating the alignments, of course).

86

count_alg::Algebra a Int
count_alg = (fE, fR, fD, fI, fL, fS, choice) where

fE = 1
fR _ x _ = x
fD _ x = x
fI x _ = x
fL _ _ _ x _ = x
fS _ x _ _ _ = x
choice [] = []
choice xs = [sum xs]

The following scoring algebra implements a model withaffine gap scores [6]. Such a model is used
e.g. byCLUSTALW, a popular sequence alignment tool [12]. We have extended this algebra by scores for
recombinant insertions and deletions. We have given a clear advantage to recombinant indels over regular
ones by dividing their penalties by the length of the observed target site duplication.

affine_alg::Algebra Base Float
affine_alg = (fE, fR, fD, fI, fL, fS, choice) where

fE = 0
fR a x b = x + matchscore a b
fD (i,j) x = x + open + fromInt(j-i)*extend
fI x (i,j) = x + open + fromInt(j-i)*extend
fL (i,j) (u,u’) _ x _ = x + ropen (i,j) + fromInt(u’-u)*rextend
fS (i,j) x _ (u,u’) _ = x + ropen (i,j) + fromInt(u’-u)*rextend
choice [] = []
choice xs = [minimum xs]
open = 5.0
extend = 0.2
ropen (i,j) = open/fromInt(j-i)
rextend = extend

matchscore::Base->Base->Float
matchscore a b | a == b = 0

| a > b = matchscore’ b a -- function is symmetric
| otherwise = matchscore’ a b

where matchscore’ A G = 1
matchscore’ A _ = 3
matchscore’ C G = 3
matchscore’ C T = 1
matchscore’ G T = 3

The optimal alignment algebracombines the scoring algebra with the enumeration algebra. This is
straightforward. It returns an optimal alignment together with its score, inO(n2) space andO(n3) time.

4 Applications

We have applied our programs to chicken immunoglobin sequences taken from a multiple alignment. The
typical improvements achieved by our algorithm are shown in Figure 2:

• In the left part of the recombinant alignment, a gap of length 12 (present in the multiple alignment) is
re-discovered in the correct position. Additionally, it is marked as a direct repeat, as it may result from
a recombinant insertion with an empty insert. Further experiments reveal that an alignment insensitive
to recombination, but with the same scoring otherwise, has an insertion in approximately the same
position, but does not exhibit the repeat due to an accidental ambiguity which causes one base to shift
from the end to the beginning of the insert.

87

>* * ** * ** * <
...tac------------tatggctggtaccag...ctccggttccctatccggctccacaggcacat...
...tactatggctggtactatggctggtaccag...ctccggctccccaggcagaaccacaagcacat...

> * <
...tactatggctggtac------------cag...ctccggttccctatccggctccacaggca------------cat...
...tactatggctggtactatggctggtaccag...ctccgg------------ctccccaggcagaaccacaagcacat...
...RRRSSSSSSSSSSSSTTTTTTTTTTTTRRR...RLLLLLUUUUUUUTTTTTRRRRRRRRSSSUUUUUUUUUTTTRRR...

Figure 2: Original alignment (top) and recombinant alignment (bottom)

• The right part of the multiple alignment is poor with 8 mismatches (marked by the symbol*) within a
region of 23 bases (between the delimiters> and<). The recombinant alignment offers an alternative
explanation. It exhibits both a recombinant deletion and an insertion, with significant target sites,
reducing the mismatch count to 1 over the same region as in the top alignment.

From theHaskell-program, DP recurrences were derived (see Section 1.2, Principle 6). Their implemen-
tation in C by a student required three days of work, including debugging. The functional program helped
to spot errors in the C program that might otherwise have gone unnoticed. First measurements show that the
C-program runs faster than the compiledHaskell-program by a factor of 68, while using 2% of the space.4

5 Conclusion

ADP is a method for algorithm development. It can be applied beneficially merely with pencil and paper. Its
embedding inHaskelladds the convenience to test ideas very early, i.e., on a very high level of abstraction.
The benefits of the functional methods are manyfold:

1. Haskell’s infix operators are notational convenience which is essential in this context.

2. The combinator parsing technique allows to have a consistent declarative and operational meaning of
the grammar.

3. The equivalence of arrays and functions gives us polynomial efficiency without intellectual complica-
tion.

4. Laziness frees us from explicitly programming the order of computation of table entries, which is a
most error-prone task in strict setting. Our experience is summarized in the motto “No subscripts, no
errors”.

5. Algebraic data types and higher order functions allow to separate recognition phase and evaluation
algebra.m grammars andn evaluation algebras combine tom · n different analyses. In biosequence
analysis, which involves much experimental programming, this compositionality takes the logarithm
of the programming effort required otherwise.

The implementation effort can be summarized as follows. Having applied ADP in a different context before, it
took an afternoon to adapt the combinator definitions and arrive at theO(n6) algorithm. Different evaluation

4For example, when computing the alignment of Figure 2 (for sequences of length 200), the C-program takes 5 seconds using 1.08
megabytes of space, while the Haskell program takes 340 seconds using 50 megabytes of space. These results were obtain on a Pentium
PII computer with 300 MHz and 128 MB RAM. We used the C-compilergcc version 2.7.2.3, and theHaskell-compilerghc version
4.04-1.

88

algebras were helpful to test the program. Coming up with the lookahead based implementation required
some thinking, but again, its implementation and testing was a matter of hours.

Although the improved parsers are “hard-coded” rather than defined via combinators, they fit in the rest
of the program without friction. The flexibility makes us believe that the ADP method has virtually unlimited
potential for improving programming productivity in biosequence analysis.

Acknowledgement We thank Matthias Ḧochsmann for implementing the recurrences in C and performing
the experiments. Dirk Evers carefully read previous versions of the paper.

References

[1] E.L. Anson and E.W. Myers. ReAligner: A Program for Refining DNA Sequence Multi-Alignments.J.
Comp. Biol., 4:369–384, 1997.

[2] E. Birney and R. Durbin. Dynamite: A Flexible Code Generation Language for Dynamic Programming
Methods Used in Sequence Comparison. InProc. of ISMB 97, pages 56–64, 1997.

[3] M. A. Gelfand, L. I. Podolsky, T.V. Astakhova, and M. A. Roytberg. Recognition of Genes in Human
DNA Sequences.J. Comp. Biol., 3(2):223–234, 1996.

[4] R. Giegerich. A Declarative Approach to the Development of Dynamic Programming Algorithms,
Applied to RNA-Folding. Report 98–02, Technische Fakultät, Universiẗat Bielefeld, 1998.ftp://
ftp.uni-bielefeld.de/pub/papers/techfak/pi/Report98-02.ps.gz .

[5] A. Gill, J. Launchbury, and S. Peyton-Jones. A Short Cut to Deforestation. InProceedings of the Con-
ference on Functional Programming Languages and Computer Architecture, June 1993. ACM Press,
New York, NY, 1993.

[6] O. Gotoh. An Improved Algorithm for Matching Biological Sequences.J. Mol. Biol., 162:705–708,
1982.

[7] J. Hughes. Lazy Memo-Function. InProceedings of the Conference on Functional Programming Lan-
guages and Computer Architecture, pages 129–146. Lecture Notes in Computer Science201, Springer
Verlag, 1985.

[8] J. Hughes. Why Functional Programming Matters.The Computer Journal, 32(2):98–107, 1989.

[9] G. Hutton. Higher Order Functions for Parsing.J. Functional Programming, 3(2):323–343, 1992.

[10] S.B. Needleman and C.D. Wunsch. A General Method Applicable to the Search for Similarities in the
Amino-Acid Sequence of Two Proteins.J. Mol. Biol., 48:443–453, 1970.

[11] T.F. Smith and M.S. Waterman. Identification of Common Molecular Subsequences.J. Mol. Biol.,
147:195–197, 1981.

[12] J.D. Thompson, D.G. Higgins, and T.J. Gibson.CLUSTAL W: Improving the Sensitivity of Progressive
Multiple Sequence Alignment through Sequence Weighting, Position Specific Gap Penalties and Weight
Matrix Choice.Nucleic Acids Res., 22:4673–4680, 1994.

[13] P. Wadler. Deforestation: Transforming Programs to Eliminate Trees.Theoretical Computer Science,
73:231–248, 1990.

89

[14] G.F. Weiller. Phylogenetic Profiles: A Graphical Method for Detecting Genetic Recombinations in
Homologous Sequences.Mol. Biol. Evol., 15(3):326–335, 1998.

[15] M. Zuker. The Use of Dynamic Programming Algorithms in RNA Secondary Structure Prediction. In
Mathematical Methods for DNA Sequences, Waterman, M.S. (editor), pages 159–184. 1989.

90

