
BIOINFORMATICS Vol. 18 Suppl. 1 2002
Pages S312–S320

Efficient multiple genome alignment
Michael Höhl, Stefan Kurtz and Enno Ohlebusch

Faculty of Technology, University of Bielefeld, PO Box 10 01 31, Bielefeld, D-33501,
Germany

Received on January 22, 2002; revised and accepted on March 29, 2002

ABSTRACT
Motivation: To allow a direct comparison of the genomic
DNA sequences of sufficiently similar organisms, there is
an urgent need for software tools that can align more than
two genomic sequences.
Results: We developed new algorithms and a software
tool ‘Multiple Genome Aligner’ (MGA for short) that
efficiently computes multiple genome alignments of
large, closely related DNA sequences. For example, it
can align 85% percent of the complete genomes of six
human adenoviruses (average length 35 305 bp.) in 159
seconds. An alignment of 74% of the complete genomes
of three of strains of E. coli (lengths: 5 528 445; 5 498 450;
4 639 221 bp.) is produced in 30 minutes.
Availability: The software MGA is available free of charge
for non-commercial research institutions. For details see
http://bibiserv.techfak.uni-bielefeld.de/mga/.
Contact: kurtz@techfak.uni-bielefeld.de;
enno@techfak.uni-bielefeld.de
Keywords: genome comparison; multiple alignment; effi-
cient algorithms; graph algorithms; suffix trees.

INTRODUCTION
The DNA sequences of entire genomes are being de-
termined at a rapid rate. Recently, there is a growing
scientific interest in sequencing different strains of bac-
teria and other closely related organisms. For example,
the genomes of several strains of Escherichia coli and
Chlamydophila pneumoniae have already been com-
pletely sequenced. When the genomic DNA sequences of
closely related organisms become available, one of the
first questions researchers ask is how the genomes align.
Although a number of software tools aimed at comparing
two genomic DNA sequences exist (Delcher et al., 1999;
Batzoglu et al., 2000; Kent and Zahler, 2000), there is
an immediate need for ‘reliable and automatic software
for aligning three or more genomic sequences’ (Miller,
2001). To our knowledge, this paper presents the first
software tool for this task.

It should be pointed out that an alignment of the
genomes (genomic DNA sequences) of several organisms
makes sense only if the organisms are closely related.

Otherwise, one has to take genome rearrangements into
account. In this case, one would first try to identify
syntenic regions and then align these instead of the entire
genomes.

Numerous multiple alignment methods have been
published in the bioinformatics literature, but the vast
literature is almost entirely geared toward comparison
of protein sequences (because in the past, genomes of
several similar organisms were not available). Virtually all
of the global multiple alignment methods used in practice
are variants of either (1) ‘iterative pairwise alignment’
or (2) ‘anchor-based multiple alignment’. Methods from
category (1) follow a general strategy of iteratively
merging two multiple alignments of two disjoint subsets
of sequences into a single multiple alignment of the union
of those subsets. If, as usually done, the global pairwise
alignment of two genomic DNA sequences S1 and S2 is
computed by standard dynamic programming algorithms
(which requires O(|S1| · |S2|) time, where |S| denotes the
length of a sequence S), then such an iterative method
cannot be used in practice to align DNA sequences of
entire genomes.

Methods from category (2) try to identify substrings of
the sequences under consideration that are very likely be
part of a global multiple alignment. These substrings form
‘anchors’ in the sequences to be aligned. Consequently,
a method of category (2) first aligns those anchors
and subsequently closes the gaps, i.e., it aligns the
substrings between the anchors. The latter can be done
by applying the same method recursively to the gaps—
yielding a divide and conquer method—but also by
any other alignment method. Anchor-based alignment
methods are well suited for aligning very long sequences.
The software tool MUMmer (Delcher et al., 1999) is
an impressive implementation of such a method. In our
opinion, it is a major breakthrough toward the solution of
the alignment problem of two sufficiently similar genomic
DNA sequences. Like any other existing method, however,
MUMmer cannot align more than two sequences.

In this paper, we present the anchor-based method
MGA that is capable of aligning three or more genomes.
The method is divided into three phases. In the first
phase, a novel algorithm detects all maximal multiple

S312 c© Oxford University Press 2002

Efficient multiple genome alignment

exact matches (multiMEMs) whose length exceeds a given
threshold. Roughly speaking, a multiMEM is a sequence
that occurs in all genomes to be aligned and cannot
simultaneously be extended to the left or right in every
genome. Our novel algorithm uses O(kn + r) time in
the worst case, where k is the number of genomes, n is
their total length, and r is the number of right maximal
multiple exact matches. Its efficient implementation is
based on the virtual suffix tree (Kasai et al., 2001)
which requires only 5 bytes per input character. By
contrast, other implementations of the suffix tree require
much more space. For example, our experiments show
that MUMmer’s implementation uses 50 bytes per input
character, see the section on Experiments.

In the second phase, MGA computes the ‘anchors’,
consisting of the longest non-overlapping sequence of
multiMEMs that occur in the same order in each of the
genomes. This is achieved in time O(k · m2) in the worst
case, where m is the number of multiMEMs, by using an
efficient graph algorithm that seems to be folk knowledge
(Arkin and Silverberg, 1987; Vingron and Argos, 1989;
Gusfield, 1997).

In the third phase, MGA closes the gaps between
the anchors. First, this is done by recursively applying
the same method a certain number of times, thereby
lowering the length threshold for the multiMEMs. The
gaps that are left over are handled as follows: Short gaps
are closed by the multiple sequence alignment program
ClustalW (Thompson et al., 1994), which is a widely used
implementation of an iterative multiple alignment method.
Long gaps remain unaligned in order to cope with long
insertions, deletions, etc.

MGA is not only a multiple alignment tool. It can also
efficiently align two genomes. Applied to two sequences,
it provides several important advantages over MUMmer:

• While MUMmer computes maximal unique matches
(MUMs, i.e., matches that occur once in each genome)
to anchor alignments, MGA uses maximal exact
matches (MEMs). These are more general than
MUMs, as they are allowed to occur more than once
in each genome. However, if the user requests MUMs,
then MGA also delivers them as anchors.

• The computation of MEMs or MUMs is based on a
virtual suffix tree. This index structure requires much
less space than MUMmers implementation of the suffix
tree (see above), and it delivers matches faster.

• Despite the more general notion of matches, MGA
always delivers the anchors for two sequences in
O(m log m) time, where m is the number of MUMs
or MEMs, using the algorithm of (Joseph et al., 1992).

• To close the gaps, MGA applies the greedy alignment
algorithm of (Ukkonen, 1985). This aligns two se-

quences of length r and r ′ in O(e · min(r, r ′)) time,
where e is their edit distance. Thus, it gives a speedup
over the O(r · r ′) standard dynamic programming al-
gorithm used in MUMmer for the same task, provided
the sequences to be aligned are similar.

• While MUMmer restricts the length of the gaps to be
closed, MGA aligns gaps of arbitrary length if they
are sufficiently similar according to a percent identity
score specified by the user.

Our experiments show that MGA is always faster than
MUMmer (for two strains of E. coli over five times faster),
using less than 18% of the space (for two strains of E. coli
only 8% of the space).

The rest of the paper is organized as follows. We start
with brief descriptions of existing tools for aligning pairs
of large genomic DNA sequences. After introducing some
basic definitions, the section on Algorithms and Data
Structures outlines the three phases of our tool MGA.
The new algorithm for finding multiMEMs is described in
detail, including some important implementation details.
Finally, we present our experimental results.

RELATED WORK
To the best of our knowledge, there is no other software
tool that can align more than two DNA sequences of the
size of entire genomes (e.g., of bacteria or of eukaryotes).
For this reason, we must restrict our discussion of related
work to software tools that are aimed at aligning two
genomic DNA sequences. We will briefly describe the
software tools MUMmer, GLASS, and WABA. The well-
known web-based tool PipMaker constructs alignments
using blastz (Miller, 2001), but there is no description
of how this is done. For this reason, we do not further
discuss PipMaker. Recently Buhler (2001) described a
novel approach to align large sequences, but no software
tool incorporating this approach seems to be available.

MUMmer
As already mentioned, MUMmer is an anchor-based tool.
It proceeds in the following three phases: (1) A maximal
unique match (MUM) decomposition of the two genomes
S1 and S2 is computed. A MUM is a sequence that occurs
exactly once in genome S1 and once in genome S2, and
is not contained in any longer such sequence. Using the
suffix tree of S1$S2, MUMs can be computed in O(n) time
and space, where n = |S1$S2| and $ is a symbol neither
occurring in S1 nor in S2. (2) The matches found in the
MUM decomposition are sorted, and the longest possible
set of MUMs that occur in the same order in both genomes
is extracted, yielding the anchors. This can be done using
the algorithm of Jacobson and Vo (1992) to find the
heaviest increasing subsequence (HIS) of a sequence of

S313

M.Höhl et al.

weighted integers. This phase takes O(m · log m) time in
the worst case, where m is the number of MUMs. Note,
however, that MUMmer actually uses a simpler O(m2)

time dynamic programming algorithm. (3) The gaps in the
anchor alignment that have length less than or equal to
a given limit (5000 bp. is the default in MUMmer) are
closed with a standard dynamic programming algorithm
(Needleman and Wunsch, 1970). For one gap consisting
of two sequences of length r and r ′, this takes O(r · r ′)
time and O(min(r, r ′)) space. Gaps that are longer than
the limit remain unaligned.

The restriction of using only MUMs as anchors seems
unnecessary and is not justified. Exact matches occurring
more than once in a genome may also be meaningful.
Furthermore, the coverage of the sequences increases if
other matches are taken into account. Moreover, the use of
the HIS algorithm of (Jacobson and Vo, 1992) for chaining
the MUMs is not adequate. This is because the resulting
chain of MUMs may contain overlapping MUMs, which
in turn may lead to inconsistencies (i.e., it may not be
possible to find an alignment that is consistent with all
selected MUMs). MUMmer takes an ad hoc approach to
handle this: It simply removes the overlapping parts from
the MUMs, see Figure 1.

GLASS
The acronym GLASS stands for GLobal Alignment SyStem
(Batzoglu et al., 2000). It has been developed for the
preprocessing step of the gene prediction tool ROSETTA.
GLASS is based on a model of eukaryotic DNA sequences
containing long, weakly conserved introns and short,
strongly conserved exons. Thus, the model is not suitable
for prokaryotes.

GLASS also falls into the category of anchor-based
alignment tools. It consists of five steps (1)–(5), which
deliver a partial alignment of the two input sequences,
possibly leaving some regions unaligned.

(1) All pairs of exact matching k-mers (i.e., strings of
length k) in the two input sequences S1 and S2 are searched
for. Initially, k = 20. (2) For a given pair of matching k-
mers (w1, w2), its score s = sl + sr is determined as fol-
lows: A dynamic programming algorithm is applied to the
12 nucleotides to the left of w1 and w2, yielding score sl ,
and to the right of w1 and w2, yielding score sr . (3) The
highest scoring sequence of k-mers that occur in the same
order in both DNA sequences is computed by a dynamic
programming algorithm. (4) All k-mer matches in the re-
sulting sequence whose score s is below a given thresh-
old are removed. Furthermore, inconsistent overlapping
k-mers are also removed; (w1, w2) and (w′

1, w
′
2) are in-

consistent if the overlap of w1 and w′
1 differs from the

overlap of w2 and w′
2. (5) The resulting k-mers serve as

anchors in the alignment of S1 and S2. Steps (1)–(5) are
recursively applied to the gaps (all unaligned regions be-

tween the anchors) with decreasing values of k, namely
15, 12, 9, 8, 7, 6, 5. Finally, all remaining gaps are aligned
by standard dynamic programming.

A major drawback of GLASS is the huge space require-
ment. For example, an alignment of two DNA sequences
of human and mouse (length 222 930 bp. and 227 538 bp.,
see the first sequence set in Experiments) is produced in
about 14 minutes using 1.14 gigabytes of main memory.
It takes 38 minutes to align a similar pair of sequences
of twice the length, using 2.05 gigabytes. Furthermore, it
seems that GLASS does not take advantage of long identi-
cal regions in sequences. For example, to deliver an align-
ment of the initial 200 000 bp. of two strains of E. coli,
GLASS requires more than 25 hours of computation time
(we stopped the job after 25 hours).

WABA
The acronym WABA stands for Wobble Aware Bulk
Aligner (Kent and Zahler, 2000). The key feature of WABA
is that wobble bases are treated differently from other
bases. The third base in a codon is called wobble base
because mutations in this base are often silent in the sense
that they do not change the corresponding amino acid
(due to the redundancy of the genetic code). WABA has
been developed specifically for separately aligning 229
different sequences from C. briggsae (8 megabases total
length, 34 722 bp. average length) against 97 megabases
of the C. elegans genome.

WABA can be divided into three phases. (1) The smaller
of the two input sequences is broken into short, overlap-
ping sequence fragments. Then homologies between the
short sequence fragments and the other input sequence are
searched for. (2) Homologous regions are aligned in an
extended window using a pairwise hidden Markov model
(Durbin et al., 1998). (3) If any two of these local align-
ments overlap by at least 15 bp. and are identical in the
overlapping region, then they are merged into one larger
alignment.

The homology search in the first phase is carried out
in gapped BLAST-like fashion (Altschul et al., 1997)
with one modification. In WABA, high scoring pairs
are not required to match exactly but may contain a
mismatch every three bases. This is justified by the fact
that homologous regions in two related DNA sequences
are most likely protein coding regions. In these, most point
mutations occur in the third base of a codon.

The running time of WABA for aligning the 8 megabases
of C. briggsae and the 97 megabases of C. elegans was
about 12 days on a Pentium III 450 MHz computer
(20 hours + 11 days + 15 minutes for the respective
phases). This renders the approach impractical for larger
genomes.

S314

Efficient multiple genome alignment

BASIC DEFINITIONS
We index the characters of a sequence from 0.
That is, a sequence S of length n is written as
S = S[0]S[1] . . . S[n−1] = S[0 . . . n−1]. A prefix of S is
a sequence S[0] . . . S[i] for some i ∈ [0, n−1]. A suffix of
S is a sequence S[j] . . . S[n − 1] for some j ∈ [0, n − 1].
Consider a set {G0, . . . , Gk−1} of k ≥ 2 sequences,
the genomes. A multiple exact match is a (k + 1)-tuple
(l, p0, p1, . . . , pk−1) such that l > 0, pq ∈ [0, |Gq | − l],
and Gq [pq . . . pq + l −1] = Gq ′ [pq ′ . . . pq ′ + l −1] for all
q, q ′ ∈ [0, k − 1]. A multiple exact match is left maximal
if for at least one pair (q, q ′) ∈ [0, k − 1] × [0, k − 1],
we either have pq = 0, or pq ′ = 0, or Gq [pq − 1] �=
Gq ′ [pq ′ − 1]. A multiple exact match is right maximal
if for at least one pair (q, q ′) ∈ [0, k − 1] × [0, k − 1],
we either have pq + l = |Gq |, or pq ′ + l = |Gq ′ |, or
Gq [pq + l] �= Gq ′ [pq ′ + l]. A multiple exact match
is maximal if it is left maximal and right maximal. A
maximal multiple exact match is also called multiMEM.
For k = 2, we use the notion MEM. Roughly speaking,
a multiMEM is a sequence of length l that occurs in all
sequences G0, . . . , Gk−1 (at positions p0, . . . , pk−1), and
cannot simultaneously be extended to the left or to the
right in every sequence.

ALGORITHMS AND DATA STRUCTURES
Computing multiMEMs
Let $0, . . . , $k−1 be pairwise different symbols not occur-
ring in any Gq and let S = G0$0G1$1 . . . Gk−2$k−2Gk−1.
That is, $0, . . . , $k−2 are used to separate the sequences in
the concatenation S. $k−1 will be used as a sentinel at-
tached to the end of S, see below.

Let n = |S| = k − 1 + ∑k−1
q=0 |Gq |. For any i ∈ [0, n],

let Si = S[i . . . n−1]$k−1 denote the i th non-empty suffix
of S$k−1. Hence Sn = $k−1.

Define t0 = 0 and tq = tq−1 + |Gq−1| + 1 for any q ∈
[1, k]. tq is the start position of Gq in S for q ∈ [0, k − 1].
Let i ∈ [0, n − 1] such that S[i] /∈ {$0, . . . , $k−2}. We
define two functions σ and ρ as follows:

• σ(i) = q if and only if tq ≤ i < tq+1 − 1

• ρ(i) = i − tσ(i)

That is, position i in S is identified with the relative
position ρ(i) in sequence Gσ(i).

We consider trees whose edges are labelled by non-
empty sequences. For each character a, every node α

in these trees has at most one a-edge α av✲ β for some
sequence v and some node β. Consider a tree T and let
α be a node in T . We denote α by w if and only if w is
the concatenation of the edge labels on the path from the
root of T to α. A sequence w occurs in T if and only if
T contains a node wv, for some sequence v. The suffix

tree for S, denoted by ST, is the tree T with the following
properties: (1) each node is either the root, a leaf or a
branching node, and (2) a sequence w occurs in T if and
only if w is a substring of S$k−1.

There is a one-to-one correspondence between the
leaves of the suffix tree and the non-empty suffixes of
S$k−1: Leaf Si corresponds to suffix Si and vice versa.
For this reason, we sometimes denote Si by �(i). It is well
known that a suffix tree can be constructed in linear time
and linear space (Weiner, 1973; McCreight, 1976).

For any node u of ST (including the leaves), let Pu be
the set of positions i such that u is a prefix of Si . In other
words, Pu is the set of positions in S where the sequence
u starts. We divide Pu into disjoint and possibly empty
position sets according to σ : For any q ∈ [0, k − 1], we
define Pu(q) = {i ∈ Pu | σ(i) = q}, i.e., Pu(q) is the set
of positions i in S where u starts and i occurs in genome
Gq .

We now describe an algorithm to compute all mul-
tiMEMs, using the suffix tree for S. Our algorithm
computes position sets by processing the edges of the
suffix tree in a bottom-up strategy. That is, the edge
leading to node u is processed only after all edges in the
subtree below u have been processed.

If u is a leaf, say �(i), then compute P�(i)(q) = {i} if
σ(i) = q, and P�(i)(q) = ∅ otherwise. Now suppose
u is a branching node. The edges outgoing from u are
processed from left to right. Consider an edge u ✲ w. Due
to the bottom-up strategy, Pw(q) is already computed for
any q ∈ [0, k − 1]. However, only a subset of Pu(q) has
been computed since only the first, say j , edges outgoing
from u have been processed. We denote the corresponding
subset of Pu(q) by P j

u (q). u ✲ w is processed in
the following way: At first multiMEMs are output by
combining P j

u with Pw. In particular, all (k + 1)-tuples
(l, p0, p1, . . . , pk−1) satisfying the following conditions
are enumerated:

(1) l = |u|
(2) pq ∈ P j

u (q) ∪ Pw(q) for any q ∈ [0, k − 1]
(3) pq ∈ P j

u (q) for at least one q ∈ [0, k − 1].
(4) pq ∈ Pw(q) for at least one q ∈ [0, k − 1].

By definition of Pu , u occurs at the positions p0, p1, . . . ,

pk−1 in S. Moreover, for each q ∈ [0, k − 1],
ρ(pq) is a relative position of u in Gq . Hence
(l, ρ(p0), ρ(p1), . . . , ρ(pk−1)) is a multiple exact
match. Conditions (3) and (4) guarantee that not all po-
sitions are exclusively taken from P j

u (q) or from Pw(q).
Hence at least two of the positions in {p0, p1, . . . , pk−1}
are taken from different subtrees of u. This implies
right maximality. To guarantee left maximality, we

S315

M.Höhl et al.

reject (l, ρ(p0), ρ(p1), . . . , ρ(pk−1)), if p0 > 0 and
S[p0 − 1] = S[p1 − 1] = · · · = S[pk−1 − 1].

As soon as for the current edge u ✲ w the multiMEMs
are enumerated, our algorithm adds Pw(q) to P j

u (q) to

obtain position sets P j+1
u (q) for all q ∈ [0, k −1]. That is,

the position sets are inherited from node w to the parent
node u. Finally, Pu(q) is obtained as soon as all edges
outgoing from u are processed.

To analyse the efficiency of our algorithm we describe
how to implement position sets and how to accomplish the
bottom-up traversal.

Implementation of position sets. Our algorithm performs
two operations on position sets: Enumeration of multiple
exact matches by combining position sets and adding up
position sets. A position set Pu(q) is the union of position
sets from the subtrees below u. Recall that we considered
processing an edge u ✲ w. If the edges to the children of
w have been processed, the position sets of the children
are obsolete. Hence it is not required to copy position sets.
At any time of the algorithm, each position is included
in exactly one position set. For each node we store k
references to k possibly empty position sets. Hence, the
space requirement for the position sets is O(kn). The
union operation for the position sets can be implemented
in constant time, if we use linked lists. For each node, we
have O(k) union operations. Since there are O(n) edges in
the suffix tree, the union and add operations thus require
O(kn) time.

Each combination of position sets requires to enumerate
the Cartesian product

k−1×
q=0

(Pu(q) ∪ Pw(q)) \
((

k−1×
q=0

Pu(q)

)
∪

(
k−1×
q=0

Pw(q)

))
.

This can be done in time proportional to its size. With the
enumeration of the Cartesian product we maintain the size
of the set Cleft = {S[pq − 1] | q ∈ [0, k − 1], pq > 0}.
This takes constant time per enumeration step. Now
an enumerated right maximal multiple exact match
(l, ρ(p0), ρ(p1), . . . , ρ(pk−1)) is left maximal if and
only if p0 = 0 or |Cleft| ≥ 2. Thus the left maximality
can be decided in constant extra time. Altogether the
position sets are maintained and repeats are output in
O(kn + r) time, where r is the number of right maximal
multiple exact matches. This time bound can be further
improved by dividing each Pu(q) into subsets according
to the character to the left of the corresponding position.
This leads to an algorithm that enumerates multiMEMs
directly without any further test for left maximality, using
O(|�|kn +m) time where m is the number of multiMEMs
and � is the alphabet.

Implementation of the bottom-up traversal. We have
described our algorithm based on suffix trees, because

these are widely known in the bioinformatics community.
However, we actually implemented our algorithm on
‘virtual suffix trees’, introduced in Kasai et al. (2001).
This new data structure consists of two tables, suftab and
lcptab, which allow to simulate the bottom-up traversal of
the suffix tree for S, as required for our algorithm. The two
tables are defined as follows:

• suftab is a table of length n + 1 indexed from
0 to n such that Ssuftab[0], Ssuftab[1], . . . , Ssuftab[n]
is the sequence of suffixes of S$k−1 in ascending
lexicographic order.

• lcptab is a table of length n indexed from 1 to n such
that, for any i ∈ [1, n], lcptab[i] is the length of the
longest common prefix of the suffixes Ssuftab[i−1] and
Ssuftab[i].

Table suftab is also called suffix array (Manber and
Myers, 1993). The simulation algorithm of Kasai et al.
(2001) runs in O(n) time. The same time bound can
be achieved for a bottom-up traversal of the suffix tree.
More importantly, the two tables require much less space
than the suffix tree. Table suftab can be implemented in
4(n + 1) bytes. Table lcptab only requires n bytes, due
to the fact that the values in this table are expected to
be small. Tables suftab and lcptab can be constructed
in O(kn) time and space using a suffix tree, see Gusfield
(1997).

Altogether our algorithm runs in O(kn + r) time and
O(kn) space, where r is the number of right maximal
multiple exact matches. Note that for k = 2, our algorithm
is very similar to the algorithm of Gusfield (1997, page
147) to compute maximal repeated pairs.

Selecting an optimal set of multiMEMs
This problem is an instance of the following more
general problem from computational geometry. Let a k-
dimensional Euclidean space with rectangular coordinate
system be given. We consider k-dimensional rectangular
solids, in which the edges of the solids are parallel
with the coordinates. Each such rectangular solid can be
characterized by a point p = (p1, . . . , pk) and the lengths
l1, . . . , lk of its edges. (In the plane, p = (p1, p2) is
the lower-left corner of a rectangle, l1 is the length of
the edge parallel with the x-coordinate, and l2 is the
length of the edge parallel with the y-coordinate.) Thus,
a rectangular solid rs consists of 2k components, viz. rs =
(p1, . . . , pk, l1, . . . , lk). Moreover, a rectangular solid rs
has an associated weight w(rs), which, for example, could
be the volume of rs.

For two rectangular solids

rs = (p1, . . . , pk, l1, . . . , lk) and
rs′ = (p′

1, . . . , p′
k, l ′1, . . . , l ′k)

S316

Efficient multiple genome alignment

Fig. 1. A maximum weight chain (drawn by solid arrows) of MEMs
(represented by squares) as delivered by the algorithm applied in
phase (2) of MGA. The rightmost chain (drawn by dashed-dotted
arrows) is suboptimal. Not all chains are shown. Suppose that
all MEMs are MUMs. A HIS-chain of these MUMs (depicted by
dashed arrows), as computed by MUMmer, consists of five squares.
The HIS-chain includes a square that overlaps with the squares
below it and to its right-hand side. To guarantee that the alignment
is consistent, MUMmer removes the overlaps, retaining shortened
matches (drawn as dotted squares). As a result, the HIS-chain
containing shortened matches is suboptimal.

we define rs ≺ rs′ if and only if for all i ∈ [1, k] the
inequality pi + li < p′

i holds.
In what follows, let a set of rectangular solids

{rs1, . . . , rsm} be given. A subset C = {rsi1, . . . , rsiq } of
{rs1, . . . , rsm} satisfying rsi1 ≺ rsi2 ≺ · · · ≺ rsiq is called
a chain. The weight of chain C is

∑q
j=1 w(rsi j).

We want to find a chain with maximum weight
among all chains. To do so, we transform the prob-
lem into a graph theoretical problem. We construct a
weighted directed graph G = (V, E) with vertices
V = {start, rs1, . . . , rsm, stop}. The set of edges E is
characterized as follows: There is an edge start → rs j
with weight 0 for j ∈ [1, m], an edge rsi → rs j with
weight w(rsi) if rsi ≺ rs j , and an edge rsi → stop with
weight w(rsi) for i ∈ [1, m]. Constructing the graph takes
O(k ·m2) time. Note that the graph is acyclic. A maximum
weight chain of rectangular solids corresponds to a path
with maximum weight from vertex start to vertex stop
in the graph. Because the graph is acyclic, such a path

can be computed in �(|V | + |E |) time (Lawler, 1976;
Cormen et al., 1990, Section 25.4). All in all, a chain with
maximum weight can be computed in O(k · m2) time
because |V | + |E | ∈ O(m2).

Viewing a multiMEM (l, p0, . . . , pk−1) as a rectangu-
lar solid (p0, . . . , pk−1, l, . . . , l) in the k-dimensional Eu-
clidean space with associated weight l, the longest non-
overlapping set of matches that occur in the same order in
every genome G0, . . . , Gk−1 can be determined by com-
puting a chain with maximum weight among all chains of
rectangular solids, see Figure 1 for the case k = 2. As a
consequence, the second phase of algorithm MGA takes
O(k · m2), where m is the number of multiMEMs.

A more efficient chaining algorithm was devised by
(Myers and Miller, 1995). It runs in O(m · logk m) time
and O(km · logk−1 m) space, provided k < log m. It
remains unclear whether this algorithm will give a speedup
in practice.

Closing the gaps
In the third phase, one has to close the gaps in the
alignment by computing a multiple sequence alignment.
We choose the program ClustalW (Thompson et al., 1994)
for this task. ClustalW is a widely used implementation
of profile-based progressive multiple alignment. It is easy
to interface other multiple alignment programs with our
software.

EXPERIMENTAL RESULTS
We used the following sets of DNA sequences in our
experiments:

Human/Mouse: These are two sequences from Homo
sapiens and Mus musculus consisting of 222 930 bp.
and 227 538 bp., respectively. The GenBank
accession numbers are U47924 and AC002397.

Mycoplasma: The complete genomes of Mycoplasma
pneumoniae M129 (816 394 bp., NC 000912) and of
Mycoplasma genitalium G37 (580 074 bp., L43967).

Tuberculosis: The complete genomes of two strains
of Mycobacterium tuberculosis (4 411 529 bp.,
AL123456; 4 403 836 bp., AE000516).

Streptococcus: The complete genomes of two strains
of Streptococcus pneumoniae (2 160 837 bp.,
NC 003028.1; 2 038 615 bp., NC 003098.1).

E. coli 2: The complete genomes of two strains of
Escherichia coli (K-12 MG1655, 4 639 221 bp.,
U00096.1; O157:H7, 5 528 445 bp., AE005174.1).

Adenovirus 6: Six complete genomes of human ade-
noviruses (35 937 bp., NC 001405.1; 35 935 bp.,
NC 001406.1; 34 214 bp., NC 001454.1; 34 125 bp.,

S317

M.Höhl et al.

NC 001460.1; 35 100 bp., NC 002067.1; 36 521 bp.,
NC 003266.1).

E. coli 3: E. coli 2 plus the complete genome of another
strain of E. coli (O157:H7, 5 498 450 bp., BA000007).

C. pneumoniae 3: The complete genomes of three
strains of Chlamydophila pneumoniae (1 229 853 bp.,
AE002161; 1 226 565 bp., BA000008; 1 230 230 bp.,
NC 000922.1).

S. aureus 3: The complete genomes of three strains
of Staphylococcus aureus (N315, 2 813 641 bp.,
NC 002745.1; Mu50, 2 878 040 bp., NC 002758.1;
EMRSA-16 strain 252, 2 902 619 bp., ftp:
//ftp.sanger.ac.uk/pub/pathogens/sa/MRSA.dbs).

S. aureus 4: S. aureus 3 plus the complete genome of an-
other strain of S. aureus (NCTC 8325, 2 821 905 bp.,
ftp://ftp.genome.ou.edu/pub/staph/).

The first three sets of sequences were also used in
(Delcher et al., 1999) to evaluate MUMmer.

In the first experiment, we applied MUMmer and MGA
to the first five sets of sequences. For a fair comparison,
we used options of MGA which reproduce the results of
MUMmer. In particular, MGA also computed MUMs and
did not apply the recursive strategy to close the gaps.
Both tools aligned a gap only if its length did not exceed
1000 bp. MGA basically delivered the same alignments
as MUMmer and so we do not comment on them. Small
differences in the alignments (if any) are due to the ad hoc
handling of overlapping MUMs in MUMmer, see Figure 1.
We report on the coverage, the running time for the
three phases of the programs, and the space requirement
(only for the first phase, since this requires most of the
space). The coverage is the percentage of each sequence,
appearing in the delivered alignment (recall that the tools
leave parts of the sequences unaligned). The coverage is
only reported once, since it is the same for both tools.

The running time (user time plus system time) was
measured on a SUN-Solaris computer with a 750 MHz
SPARC-CPU and 4 GB of main memory. The results are
shown in Tables 1 and 2.

Our experiment shows that MGA is by far superior to
MUMmer in terms of space requirement. In the first phase,
MGA only requires between 8 and 18% of the space. Thus
MGA overcomes the memory bottleneck of MUMmer, but
still has a running time advantage. This advantage can
be seen in the chaining phase: Since MUMmer applies
an O(m2) algorithm to m MUMs, it does not scale up
for Streptococcus and E. coli 2, due to the large number
of MUMs. The coverage of Mycoplasma is small, due to
the large difference in the genome lengths, the lack of
long identical matches, and the fact that we closed gaps
only if they are at most of length 1000 bp. (to make the

results comparable). Increasing the maximal gap length
to 5000 bp. improves the coverage to 38.8% and 51.4%,
respectively.

In our second experiment, we applied MGA to the first
five sequence pairs taking MEMs as anchors. Gaps were
closed only if the sequences in the gaps had an identity
of at least 60%. The running time of all three phases
was almost the same as in experiment one (data not
shown). Due to the different strategy in phase (3), gaps
consisting of unconserved sequences are not forced into
an alignment. On the other hand, similar large sequences
in gaps are aligned very efficiently. For example, in
Tuberculosis we found a gap consisting of sequences of
length 10 722 and 10 721 with edit distance 2. These had
been excluded from a maximal chain, because they are
part of a MEM of length 10 724 which overlaps another
MEM of length 17 543.

In our third experiment, we applied MGA to the sets
Adenovirus 6, E. coli 3, C. pneumoniae 3, and S. au-
reus 3/4 (see Table 3). The times reported are user times
plus system times in minutes. The time for constructing
the virtual suffix trees of the sequence sets is not included.
This always requires less than 10 minutes, and only
has to be done once for each sequence set. The fourth
column of Table 3 shows the total running time including
ClustalW, while the fifth column gives the running times
excluding ClustalW, i.e., the time for computing the
multiMEMs and chaining them. For Adenovirus 6, the
alignment was constructed by recursively applying MGA
to compute multiMEMs of minimal size 10, 9, . . . , 4.
Gaps of size larger than 1000 bp. remained unaligned.
For E. coli 3, MGA constructed the alignment by first
computing multiMEMs of length at least 1000, and then
proceeded recursively with multiMEMs of minimum
length 20 bp. Note that most of the computation time was
used by ClustalW. For C. pneumoniae 3, the alignment
was constructed by recursively applying MGA to compute
multiMEMs of minimal size 15, 9, 4. Note that most of
the running time was used by the first two phases of
MGA. This is due to the lack of long multiMEMs and the
large number of short multiMEMs in the genomes. For
S. aureus 3 the same length thresholds were used as in
E. coli 3. For S. aureus 4 the large number of multiMEMs
requires to use the length threshold of 25 in the recursive
calls. This in turn leads to a reduced running time for
phases (1) and (2) compared to S. aureus 3. The coverage
remains high, due to the strong similarity in the four
Staphylococcus strains.

FUTURE WORK
Of course, MGA should be supplemented with a good
interactive visualization component. This is a challenging
task (see the discussion in Miller (2001)). Even for an
alignment of two genomes, the existing solutions to this

S318

Efficient multiple genome alignment

Table 1. Comparison of MGA and MUMmer for the first five sequence pairs. We report the running time and the space requirement when both programs
compute all MUMs of length at least �

Phase (1): Computing MUMs of length ≥ �

sequence set total length � time (seconds) memory (megabytes)

MGA MUMmer MGA MUMmer

Human/Mouse 450 468 15 0.2 1.6 4 23
Mycoplasma 1 396 468 20 0.9 7 8 68
Tuberculosis 8 815 365 50 32 52 36 422
Streptococcus 4 199 452 20 3 22 19 202
E.coli 2 10 167 666 20 13 68 39 487

Table 2. Comparison of MGA and MUMmer for the first five sequence pairs. We report the number of MUMs, the running time used for the chaining phase,
and the running time for closing the gaps. The last two columns show the coverage for the sequences, i.e., the percentage of bases, appearing in the delivered
alignment. Since both tools apply the same strategy, their coverage does not differ and we only report it once

sequence set Phase (2): Chaining Phase (3): Closing Gaps Coverage

#MUMs MGA MUMmer MGA MUMmer seq1 seq2

Human/Mouse 1 037 0.02 0.04 1.9 2.3 40.4% 37.7%
Mycoplasma 433 0.01 0.01 0.7 2.9 7.4% 10.5%
Tuberculosis 1 448 0.03 0.09 0.3 2.9 93.7% 93.9%
Streptococcus 9 351 0.27 4.1 1.0 3.0 88.6% 93.7%
E.coli 2 35 501 1.1 60 3.1 7.1 82.8% 69.4%

problem are not fully satisfactory. However, it should be
possible to adapt the visualization techniques employed
in the REPuter-program (Kurtz et al., 2001) to obtain an
alignment browsing system, which gives a good overview
of an entire pairwise alignment of large sequences and also
allows zooming in and out on regions of interest. Another
research topic to be addressed is the evaluation of MGA
from a biological point of view. However, we have to
postpone measurements of the quality of the alignments
delivered by MGA until manually curated datasets and
protocols for such an evaluation will become available.

ACKNOWLEDGEMENTS
S.K. was partially supported by grant KU 1257/1-2 from
the Deutsche Forschungsgemeinschaft. Robert Giegerich,
Mohamed Ibrahim Abouelhoda, and Gordon Gremme
carefully read previous versions of the manuscript.
Jörn Clausen and Rainer Orth were very helpful when
performing the experiments. All this help is appreciated.

REFERENCES
Altschul,S., Madden,T., Schäffer,A., Zhang,J., Zhang,Z., Miller,W.

and Lipman,D. (1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids
Res., 25, 3389–3402.

Arkin,E. and Silverberg,E. (1987) Scheduling jobs with fixed start
and end times. Discrete Applied Mathematics, 18, 1–8.

Batzoglu,S., Pachter,L., Mesirov,J., Berger,B. and Lander,E. (2000)
Human and mouse gene structure: comparative analysis and ap-
plication to exon prediction. Genome Res., 10, 950–958.

Buhler,J. (2001) Efficient large-scale sequence comparison
by locality-sensitive hashing. Bioinformatics, 17, 419–428.

Cormen,T., Leiserson,C. and Rivest,R. (1990) Introduction to
Algorithms. MIT Press, Cambridge, MA.

Delcher,A., Kasif,S., Fleischmann,R., Peterson,J., White,O. and
Salzberg,S. (1999) Alignment of whole genomes. Nucleic Acids
Res., 27, 2369–2376.

Durbin,R., Eddy,S., Krogh,A. and Mitchison,G. (1998) Biological
Sequence Analysis. Cambridge University Press.

Gusfield,D. (1997) Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, New York.

Jacobson,G. and Vo,K. (1992) Heaviest increasing/common sub-
sequence problems. In Proceedings of the Third Annual Sym-
posium on Combinatorial Pattern Matching, Tucson, Arizona,
April/May 1992, Lecture Notes in Computer Science, 644,
Springer, pp. 52–66.

Joseph,D., Meidanis,J. and Tiwari,P. (1992) Determining DNA
sequence similarity using maximum independent set algorithms
for interval graphs. In Proceedings of the Third Scandinavian
Workshop on Algorithm Theory, Helsinki 1992, Lecture Notes in
Computer Science, 621, Springer, pp. 326–337.

Kasai,T., Lee,G., Arimura,H., Arikawa,S. and Park,K. (2001)
Linear-Time Longest-Common-Prefix Computation in Suffix Ar-

S319

M.Höhl et al.

Table 3. Application of MGA to the Multiple Genome Sets. The third column shows the length thresholds for the multiMEMs in the recursive applications
of MGA. The times reported are user times plus system times in minutes. The fourth column shows the total running time including ClustalW, while the fifth
column gives the running times excluding ClustalW, i.e., the time for computing the multiMEMs and chaining them. The last three columns show the coverage
for the sequences, i.e., the percentage of bases, appearing in the delivered alignment

sequence set total length � total time Phases (1) + (2) Space Coverage
(minutes) (minutes) (megabytes) min avg max

Adenovirus 6 211 832 10; 9; 8; 7; 6; 5; 4 2:39 1:06 46 83.1% 85.1% 86.8%
E. coli 3 15 666 116 1000; 20 30:29 3:17 151 70.0% 74.2% 83.7%
C. pneumoniae 3 3 686 648 15; 9; 4 93:59 61:16 110 72.7% 80.1% 83.9%
S. aureus 3 8 594 300 1000; 20 22:14 1:47 75 91.4% 92.6% 94.3%
S. aureus 4 11 416 205 1000; 25 27:45 1:17 116 87.4% 88.9% 90.2%

rays and its Applications. In Proceedings of the 12th Annual
Symposium on Combinatorial Pattern Matching, Jerusalem, Is-
rael, July 2001, Lecture Notes in Computer Science, 2089,
Springer, pp. 181–192.

Kent,W. and Zahler,A. (2000) Conservation, regulation, synteny,
and introns in large-scale C. briggsae–C. elegans genomic
alignment. Genome Res., 10, 1115–1125.

Kurtz,S., Choudhuri,J., Ohlebusch,E., Schleiermacher,C., Stoye,J.
and Giegerich,R. (2001) REPuter: the manifold applications of
repeat analysis on a genomic scale. Nucleic Acids Res., 29, 4633–
4642.

Lawler,E. (1976) Combinatorial Optimization: Networks and Ma-
troids. Holt, Rinehart and Winston, New York.

Manber,U. and Myers,E. (1993) Suffix arrays: a new method for
on-line string searches. SIAM J. Comput., 22, 935–948.

McCreight,E. (1976) A space-economical suffix tree construction
algorithm. J. ACM, 23, 262–272.

Miller,W. (2001) Comparison of genomic DNA sequences: solved
and unsolved problems. Bioinformatics, 17, 391–397.

Myers,E. and Miller,W. (1995) Chaining multiple-alignment frag-
ments in sub-quadratic time. In Proceedings of the Sixth ACM-
SIAM Symposium on Discrete Algorithms. San Francisco, pp.
38–47.

Needleman,S. and Wunsch,C. (1970) A general method applicable
to the search for similarities in the amino-acid sequence of two
proteins. J. Mol. Biol., 48, 443–453.

Thompson,J., Higgins,D. and Gibson,T. (1994) CLUSTAL W: im-
proving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position specific gap penalties
and weight matrix choice. Nucleic Acids Res., 22, 4673–4680.

Ukkonen,E. (1985) Algorithms for approximate string matching.
Information and Control, 64, 100–118.

Vingron,M. and Argos,P. (1989) A fast and sensitive multiple
alignment algorithm. Comput. Appl. Biosci., 5, 115–121.

Weiner,P. (1973) Linear Pattern Matching Algorithms. In Proceed-
ings of the 14th IEEE Annual Symposium on Switching and Au-
tomata Theory. The University of Iowa, pp. 1–11.

S320

