
Approximate String Searching

under Weighted Edit Distance

Stefan Kurtz

Universität Bielefeld, Technische Fakultät,
Postfach 100 131, 33501 Bielefeld, Germany,

E-mail: kurtz@techfak.uni-bielefeld.de

In Proceedings of

Third South American Workshop

on String Processing

Recife, Brazil, August 1996

Carlton University Press

Abstract. Let p ∈ Σ∗ be a string of length m and t ∈ Σ∗ be a string
of length n. The approximate string searching problem is to find all
approximate matches of p in t having weighted edit distance at most k

from p. We present a new method that preprocesses the pattern into a
DFA which scans t online in linear time, thereby recognizing all positions
in t where an approximate match ends. We show how to reduce the
exponential preprocessing effort and propose two practical algorithms.
The first algorithm constructs the states of the DFA up to a certain
depth r ≥ 1. It runs in O(|Σ|r+1 · m + q · m + n) time and O(|Σ|r+1 +
|Σ|r ·m) space where q ≤ n decreases as r increases. The second algorithm
constructs the transitions of the DFA when they are demanded. It runs
in O(qs ·|Σ|+qt ·m+n) time and O(qs ·(|Σ|+m)) space where qs ≤ qt ≤ n

depend on the problem instance. Practical measurements show that our
algorithms work well in practice and beat previous methods for problems
of interest in molecular biology.

1 Introduction

We consider the approximate string searching problem. Given a pattern p ∈ Σ∗

of length m and an input string t ∈ Σ∗ of length n, it consists of finding the
positions in t where an approximate match ends. These positions are referred
to as solutions of the approximate string searching problem. An approximate
match is a subword of t whose distance to p is at most k, for a given threshold
value k ∈ R

+. The distance is measured in terms of edit operations, that is,
deletions, insertions, and replacements of single characters. Edit operations are
weighted according to a given weight function δ.

The approximate string searching problem is of special interest in biological
sequence analysis. For instance, when searching a DNA database (the input
string) for a query (the pattern), a small but significant error must be allowed,
to take into account experimental inaccuracies as well as small differences in
DNA among individuals of the same or related species. Note that in biological
context, the weight function plays an important role. It provides a simple way to
consider knowledge about biological phenomena on the nucleotide level. That is,
by choosing an appropriate weight function, one can select those matches which
make biological sense, and reject others which do not.

So far, computer scientists have mainly focused on the k-differences problem
[17, 9, 3, 11, 4]. This is the approximate string searching problem, restricted to
the unit weight function (each edit operation has weight 1). From the view of
applications in biological sequence analysis, however, arbitrary weight functions
are definitely required, so that the k-differences problem must be considered a
“toy” problem [12].

For the general case, Sellers [16] has developed an algorithm that evaluates
for each character in t a “distance column” of m + 1 entries. If the last entry
in the jth distance column is at most k, then an approximate match ending at
position j in t is found. This solves the approximate string searching problem
in O(m · n) time and O(m) space. Sellers’ method has been adopted to solve
generalizations of the approximate string searching problem, where the pattern
is a regular expression [14] or a network expression with spacers [13].

When p is a simple string, Ukkonen [17] has observed that in each distance
column it suffices to compute the essential entries, that is, those entries which are
at most k. This observation leads to a considerable improvement of Sellers’ al-
gorithm. Moreover, it is the point of reference from where further improvements
can proceed in two ways.

1.1 Previous Improvements by Preprocessing the Input String

In [18, 5] algorithms are developed which assume that t is fixed and preprocessed
into a suffix tree, denoted stree(t) in the following. In particular, Ukkonen [18]
describes three algorithms with running times O(m ·q +n), O(m ·q · log q + tocc),
and O(m2 · q + tocc) where q ≤ n varies depending on the problem instance, and
tocc is the number of positions in t where an approximate match occurs. Cobbs
[5] has given an improved algorithm which runs in O(m · q + tocc) time, for the
same value of q as above. All results are for a fixed and finite alphabet. Note
that for the case that t is not fixed, an additional summand n must be added to
each of the O-terms. This summand results from constructing stree(t) in O(n).

1.2 A New Method Based on Preprocessing the Pattern

Our new method does not require t to be preprocessed. Instead, it preprocesses
Σ, δ, k, and p into a deterministic finite automaton (DFA for short) which rec-
ognizes shortest essential suffixes, i.e., strings determining the essential entries
of a distance column. The DFA scans t online in O(n) time, thereby recogniz-
ing all positions where an approximate match ends. For each such position it
additionally computes an approximate match ending at that position. This also
holds for the algorithms in [18, 5], but not for Sellers’ method.

As well known, a DFA runs in O(n) time with a very small constant factor.
So w.r.t. the scanning phase, our method is certainly the fastest that has been
achieved under general weight functions. However, the price to pay is the con-
struction of the DFA. Precomputing it completely requires O(|Σ|m+k+1 ·m) time
and O(|Σ|m+k+1 +m2) space in the worst case. This becomes infeasible already
for small m and k. The whole point of our approach are two algorithms that

2

reduce preprocessing effort, while still retaining efficient search for approximate
matches: The first algorithm constructs the states of the DFA up to a certain
depth r ≥ 1. It runs in O(|Σ|r+1 · m + q ·m + n) time and O(|Σ|r+1 + |Σ|r · m)
space where q ≤ n decreases as r increases. Thus r is a parameter that allows
to balance preprocessing versus search efficiency. The second algorithm applies
the lazy evaluation technique already used in the implementation of egrep (see
[2, Section 3.7]). It constructs the transitions of the DFA on-the-fly, i.e., when
they are demanded. This leads to a running time of O(qs · |Σ|+ qt ·m+n) and a
space consumption of O(qs ·(|Σ|+m)) where qs ≤ qt ≤ n depend on the problem
instance.

In comparison to the algorithms of Ukkonen [18] and Cobbs [5], our algo-
rithms have two important advantages. First, they use simpler data structures
and are therefore easier to implement. Second, they are applicable to very large
input strings. This is not true for the suffix tree based methods, as already
remarked in [18]. Practical measurements show that our algorithms work well in
practice and beat previous online algorithms for problems of interest in molecular
biology.

1.3 Overview

The paper is organized as follows. Section 2 recalls some basic definitions and
notations. In Section 3 we take some time to carefully describe the basic tech-
niques for solving the approximate string searching problem. Section 4 recalls
the basic properties of essential suffixes. In Section 5, we present our basic
method, including techniques to reduce preprocessing effort. Section 6 gives
practical measurements, and Section 7 concludes. For reasons of space, we omit
some of the proofs. They can be found in [8].

2 Basic Definitions and Notations

Let Σ be a finite set, the alphabet. The elements of Σ are characters. ε denotes
the empty string and Σ∗ denotes the set of strings over Σ. The length of a string
x, denoted by |x|, is the number of characters in x. If x = uvw for some (possibly
empty) strings u, v, and w, then u is a prefix of x, v is a subword of x, and w is
a suffix of x. A prefix or suffix of x is proper if it is different from x. A set X
of strings is prefix-closed if u ∈ X whenever ua ∈ X . xi is the ith character of
x, i.e., if |x| = n, then x = x1 . . . xn, where xi ∈ Σ.

An edit operation is a pair (a, b) ∈ (Σ ∪ {ε}) × (Σ ∪ {ε}) \ {(ε, ε)}. It is
usually written as a→ b. An alignment A of two strings u and v is a sequence
(a1→b1, . . . , ah→bh) of edit operations such that u = a1 . . . ah and v = b1 . . . bh.
A weight function δ assigns to each edit operation a→ b, a 6= b a positive real
weight δ(a → b). The weight δ(a → a) of an edit operation a → a is 0. If
δ(a→b) = 1 for all edit operations a→b, a 6= b, then δ is the unit weight function.
The weight δ(A) of an alignment A is defined by δ(A) =

∑

a→b∈A δ(a→b). The
weighted edit distance of u and v is the minimum possible weight of an alignment
of u and v.

3

3 Approximate String Searching

By a slight modification of the dynamic programming algorithm for computing
the weighted edit distance, Sellers [16] obtained a simple method (SEL for short)
to solve the approximate string searching problem. Sellers’ method is usually
described by giving the recurrence for an (m +1)× (n + 1)-table. Our approach
is slightly different. We specify SEL by an initial distance column and a function
that transforms one distance column into the next distance column, according
to some character b. This schema will prove to be very convenient when we
describe our new algorithms.

Definition 1. C denotes the set of functions f : {0, . . . , m} → R
+ where R

+

is the set of non-negative real numbers. The elements of C are columns. We
define a function nextdcol : C × Σ → C as follows. For all f ∈ C and all b ∈ Σ,
nextdcol(f, b) = fb where fb(0) = 0 and

fb(i + 1) = min

fb(i) + δ(pi+1→ε),
f(i) + δ(pi+1→b),
f(i + 1) + δ(ε→b)

Moreover, we define a function dcol : Σ∗ → C by dcol(vb) = nextdcol(dcol(v), b)
and dcol(ε) = fε where fε(0) = 0 and fε(i + 1) = fε(i) + δ(pi+1 → ε). dcol(v)
is the distance column of v. f ∈ C is a distance column if f = dcol(v) for some
v ∈ Σ∗. 2

Algorithm SEL [16] Compute dcol(ε). For each j, 1 ≤ j ≤ n, compute
dcol(t1 . . . tj) = nextdcol(dcol(t1 . . . tj−1), tj). If dcol(t1 . . . tj)(m) ≤ k, then
output j. 2

It is straightforward to show that dcol(t1 . . . tj)(i) is the minimal weighted
edit distance of p1 . . . pi and a suffix of t1 . . . tj . This implies the correctness of
Algorithm SEL. For each j, 0 ≤ j ≤ n, the distance column dcol(t1 . . . tj) can be
computed in O(m) steps. This gives an overall time efficiency of O(m ·n). Since
in each step at most two columns have to be stored, SEL needs O(m) space. In
the following, we show how to improve SEL. The idea is to compute the distance
column of t1 . . . tj modulo some equivalence.

Definition 2. [18] An entry f(i) of a distance column f is essential if f(i) ≤ k.
lei(f) = max{i | 0 ≤ i ≤ m, f(i) ≤ k} is the last essential index of f . The
distance columns f and f ′ are equivalent, denoted by f ≡ f ′, if for all i, 0 ≤ i ≤
m, f(i) = f ′(i) whenever f(i) ≤ k or f ′(i) ≤ k. 2

The equivalence notion for distance columns was basically introduced in [18].
As already stated by Ukkonen (see [18, Lemma 4]), the relation ≡ is preserved
by nextdcol. That is, for each character b and each distance column f and f ′

we have: f ≡ f ′ implies nextdcol(f, b) ≡ nextdcol(f ′, b). Note that f(m) ≤ k if
and only if the last essential index of f is m.

4

Let l = lei(f). The essential entries of fb = nextdcol(f, b) do not depend
on the entries f(l + 1), f(l + 2), . . . , f(m) since these are larger than k. Hence
it is not necessary to calculate fb completely, as done by Sellers’ algorithm.
The calculation of fb can be modified as follows. Compute fb(0), fb(1), . . . , fb(l)
according to Definition 1. If l < m, then compute

fb(l + 1) = min{fb(l) + δ(pl+1→ε), f(l) + δ(pl+1→b)},
fb(l + 2) = fb(l + 1) + δ(pl+2→ε),
fb(l + 3) = fb(l + 2) + δ(pl+3→ε),

...

until an entry fb(h) is reached such that either h = m or fb(h) > k holds. Thus
the computation of fb is cut off at index h. The last essential index of fb is the
maximal i, 0 ≤ i ≤ h such that fb(i) ≤ k. This modification leads to a cutoff
variation of Sellers’ method which was suggested by Ukkonen [17] in the context
of the unit weight function. Chang and Lampe [3] showed that Ukkonen’s cutoff
trick leads to an expected running time of O(k ·n). Our empirical measurements
suggest that this result holds for arbitrary weight functions, too. However, we
have no proof for this. Note that the cutoff variation does not improve on the
worst case efficiency of O(m · n).

4 Essential Suffixes

In the previous section, we have seen that for solving the approximate string
searching problem, it suffices to compute the essential entries of a distance col-
umn. In this section, we consider the strings which determine these entries.

Definition 3. Let v be a string. A suffix s of v is essential if dcol(s) ≡ dcol(v).
ses(v) denotes the shortest essential suffix of v. 2

Note that ses(v) depends on δ, p, and k. Since δ, p, and k are arbitrary but
fixed, we omit them in our notation. In the terminology of [18], ses(t1 . . . tj) is
the “viable (k-approximate) prefix (of p) at j.”

Example 1. Let δ be the unit weight function and p = abbb. Suppose v =
bbaba. Then we have dcol(bbaba) = (0, 0, 1, 1, 2), dcol(baba) = (0, 0, 1, 1, 2),
dcol(aba) = (0, 0, 1, 1, 2), dcol(ba) = (0, 0, 1, 2, 3), dcol(a) = (0, 0, 1, 2, 3), and
dcol(ε) = (0, 1, 2, 3, 4). If k = 0, then bbaba, baba, aba, ba, and a are the
essential suffixes of v. Hence ses(v) = a. If k > 0, then bbaba, baba, and aba are
the essential suffixes of v. Hence ses(v) = aba. 2

ses(v) determines the essential entries of dcol(v). That is, if ses(v) = ses(v′)
holds, then dcol(v) ≡ dcol(ses(v)) = dcol(ses(v′)) ≡ dcol(v′) (see [18, Theorem
1]). This property makes the shortest essential suffixes very interesting for the
approximate string searching problem. All solutions to this problem can be
enumerated according to the following idea:

5

Determine the shortest essential suffixes of all prefixes of t. If the
last entry in the distance column of a shortest essential suffix, say s,
is at most k, then output the positions in t where s ends.

In fact, the algorithms developed in [18, 5] follow this idea. In particular, they
determine the nodes in stree(t) which correspond to a shortest essential suffix.
From these nodes, the solutions to the approximate string searching problem
can be read, provided stree(t) has been annotated appropriately.

Before we describe how the idea above can be realized using DFAs, we give
some more properties of shortest essential suffixes. Lemma 4 states that the set
of all shortest essential suffixes can be represented by a trie. This is a new result.
Lemma 6 states that shortest essential suffixes can be computed using length
columns.

Lemma 4. The set {ses(v) | v ∈ Σ∗} is not empty, prefix-closed, and finite. 2

Definition 5. For all strings v we define lcol(v) ∈ C as follows. For i, 0 ≤ i ≤ m,
lcol(v)(i) is the length of the shortest suffix of v, whose weighted edit distance
to p1 . . . pi is dcol(v)(i). lcol(v) is the length column of v. g ∈ C is a length
column if g = lcol(v) for some v ∈ Σ∗. 2

Lemma 6. Let l = lei(dcol(v)). Then lcol(v)(l) = |ses(v)|. 2

In analogy to nextdcol, we introduce a function for computing length columns.

Definition 7. For f, g ∈ C and b ∈ Σ, the function nextlcol : C × C × Σ → C
is defined as follows: Let fb = nextdcol(f, b). Then nextlcol(f, g, b) = gb where
gb(0) = 0 and

gb(i + 1) =

gb(i) if fb(i + 1) = fb(i) + δ(pi+1→ε)
g(i) + 1 else if fb(i + 1) = f(i) + δ(pi+1→b)
g(i + 1) + 1 else if fb(i + 1) = f(i + 1) + δ(ε→b)

This recurrence is also given in [18]. It is easy to show that lcol(ε)(i) = 0
holds for all i, 0 ≤ i ≤ m. Moreover, for each v ∈ Σ∗ and each b ∈ Σ, lcol(vb) =
nextlcol(dcol(v), lcol(v), b). As can easily be verified, a length column can be
computed in O(m) steps. Since length columns depend on the corresponding
distance columns, both are computed simultaneously, as described in [18]. The
notion of equivalence extends as follows: Two pairs (f, g) and (f ′, g′) of distance
and length columns are equivalent, denoted by (f, g) ≡ (f ′, g′), if for all i, 0 ≤
i ≤ m, f(i) = f ′(i) and g(i) = g′(i) whenever f(i) ≤ k or f ′(i) ≤ k.

5 Algorithm SESA and its Variations

DFAs find wide application in string processing. For instance, they were used
to solve the k-differences problem. Ukkonen [17] described an algorithm which
preprocesses Σ, k, and p into a DFA whose states depict the possible distance
columns. Each transition in Ukkonen’s DFA represents the computation of a

6

distance column from a previous distance column. After precomputing the DFA,
t can be processed in linear time. However, the preprocessing time can be O(3m).
Wu, Manber, and Myers [19] have shown how to reduce the preprocessing effort
for Ukkonen’s algorithm, by applying the “Four Russian’s” paradigm. Their
algorithm achieves a running time of O(k · n/ log n) in the expected case. It is
important to note that the algorithms in [17, 19] exploit geometric properties of
distance columns, in order to efficiently store and retrieve these. Unfortunately,
these geometric properties do not hold for arbitrary weight functions. Therefore
it seems unlikely that the ideas of [17, 19] lead to efficient solutions for the
approximate string searching problem. Instead of directly precomputing distance
columns, our approach is to precompute the strings which determine the essential
entries of distance columns. This can be done efficiently for arbitrary weight
functions.

Definition 8. The SES -automaton for Σ, δ, k, and p is the deterministic finite
automaton (SES ,F , s0, nextstate) where

1. SES = {ses(v) | v ∈ Σ∗} is the set of states,

2. F = {s ∈ SES | dcol(s)(m) ≤ k} is the set of accepting states,

3. s0 = ε is the initial state, and

4. nextstate : SES × Σ → SES is the transition function defined as follows:
for each s ∈ SES and each b ∈ Σ, nextstate(s, b) is the longest suffix of sb
that occurs in SES . 2

Example 2. Let δ be the unit weight function, Σ = {a, b}, k = 1, and p = abba.
The corresponding SES -automaton is given by the following table. Accepting
states are underlined.

ε a ab aba abaa abb abba abbaa abbab abbb b bb bba

a a a aba abaa a abba abbaa a aba bba a bba a

b b ab abb ab ab abbb abbab ab abb bb bb bb ab

Note that for the same Σ, δ, k, and p, the algorithm of Ukkonen [17] computes
a DFA with only 11 states. This is due to the fact that the shortest essential
suffixes abaa, abbaa, and bba have the same distance column (0, 0, 1, 2, 1). In
fact, one can show that Ukkonen’s DFA is never larger than the corresponding
SES -automaton. 2

Algorithm SESA Construct the SES -automaton M = (SES ,F , s0, nextstate)
for Σ, δ, k, and p. For each j, 0 ≤ j ≤ n−1, compute sj+1 = nextstate(sj , tj+1).
Output j if sj ∈ F . 2

The SES -automaton for Σ, δ, k, and p accepts a prefix t1 . . . tj of t if and
only if there is an approximate match ending at position j. This is shown in the
following theorem.

7

Theorem 9. Algorithm SESA correctly solves the approximate string searching

problem.

Proof. Let 0 ≤ j ≤ n. By induction on j one shows that sj is the longest
suffix of t1 . . . tj that occurs in SES . Let s = ses(t1 . . . tj). Since s ∈ SES

and s is a suffix of t1 . . . tj , we conclude that s is a suffix of sj . Hence we
have dcol(s)(i) ≥ dcol(sj)(i) ≥ dcol(t1 . . . tj)(i) for all i, 0 ≤ i ≤ m. Using
this inequality, one easily shows dcol(sj) ≡ dcol(t1 . . . tj). That is, sj is an
essential suffix of t1 . . . tj . This implies s = sj and we can conclude: sj ∈ F iff
dcol(sj)(m) ≤ k iff dcol(s)(m) ≤ k iff dcol(t1 . . . tj)(m) ≤ k iff j is a solution to
the approximate string searching problem. 2

Note that Algorithm SESA can easily be modified such that with each so-
lution j it additionally outputs ses(t1 . . . tj), which is the shortest approximate
match ending at position j in t. All the algorithm needs, is to remember the
last |sj | characters of t1 . . . tj whenever it is in state sj .

We now consider the construction of the SES -automaton M . Lemma 4 sug-
gests a construction which begins with state s0 = ε and obtains longer and
longer states of SES . Let s ∈ SES and assume that we have computed dcol(s),
lcol(s), and a transition failure(s) yielding the longest proper suffix of s that oc-
curs in SES . failure(s) is the failure-transition of the pattern matching machine
of [1]. It is well-defined, whenever s 6= s0. According to Lemma 6, sb ∈ SES if
and only if |sb| = lcol(sb)(l) where l = lei(dcol(sb)). To check the latter con-
dition, we evaluate the distance column dcol(sb) = nextdcol(dcol(s), b) and the
length column lcol(sb) = nextlcol(dcol(s), lcol(s), b), and proceed according to
the following cases:

(i) If |sb| = lcol(sb)(l), then we construct a state sb and add a transition
nextstate(s, b) = sb. By definition, sb ∈ F if and only if dcol(sb)(m) ≤
k. failure(sb) is obtained as follows. If s = s0, then failure(sb) = s0.
Otherwise, failure(sb) = nextstate(failure(s), b).

(ii) If |sb| 6= lcol(sb)(l), then nextstate(s, b) is the longest proper suffix of sb
that occurs in SES . nextstate(s, b) is obtained as follows. If s = s0, then
nextstate(s, b) = s0. Otherwise, nextstate(s, b) = nextstate(failure(s), b).

The computation of the transitions, as described above, requires a certain eval-
uation order. In particular, before failure(sb) and nextstate(s, b) are computed,
the transitions failure(s) and nextstate(failure(s), b) have to be constructed.
An evaluation strategy respecting this order was already described in [1]. It
works in two phases: In the first phase, all states and all transitions of the form
nextstate(s, b) = sb are constructed depth first. This means that a state s′ is con-
structed before a state s, whenever s′ is a proper prefix of s. If |sb| 6= lcol(sb)(l),
then the transition nextstate(s, b) is left undefined in this phase. In the second
phase, the failure-transitions and all remaining transitions of M are computed
in a breadth first traversal over the states. This means that all transitions (in-
cluding failure-transitions) outgoing from a state s′ are constructed before the
transitions outgoing from a state s, whenever |s′| < |s|.

8

Theorem 10. SESA runs in O(|SES| · |Σ| ·m+n) time and O(|SES| · |Σ|+m2)
space.

Proof. M can be represented in O(|SES | · |Σ|) space. During the first phase of
the construction extra space for the distance and length columns is required. If
s is the state for which the transitions are to be constructed, then it suffices to
store the distance and the length columns for the prefixes of s. Since the length
of s, as well as the size of the columns is O(m) in the worst case, O(m2) space
is required for storing the columns. The first phase of the construction takes
O(|SES | · |Σ| ·m) time, since for each of the |SES | · |Σ| transitions, the functions
nextdcol and nextlcol are called. Consider the second phase. The breadth first
traversal can be implemented using a queue of pointers to states. For details
see [1]. The queue requires O(|SES |) space. Each transition which was left
undefined in the first phase, can be constructed in constant time. Hence each
state is processed in O(|Σ|) steps. After M is constructed, t is scanned in O(n)
time, without using extra space. 2

As noted in [18], the length of a shortest essential suffix is O(m). This gives
a very rough upper bound for the size of SES . For a very general class of weight
functions (which includes all integer weight functions), we can prove a useful
property relating length and distance columns. This property can be exploited
to derive a tighter upper bound.

Lemma 11. Suppose δ is a weight function such that δ(ε→ b) ≥ 1 for all edit

operations of the form ε→ b. Then we have lcol(v)(i) ≤ i + dcol(v)(i) for each

v ∈ Σ∗ and each i, 0 ≤ i ≤ m. 2

Theorem 12. Let δ be as in Lemma 11. Then |SES| ≤ 2 · |Σ|m+k − 1.

Proof. Let s ∈ SES and l = lei(dcol(s)). Then |s| = lcol(s)(l) ≤ l + dcol(s)(l),
by Lemmas 6 and 11. Now l ≤ m and dcol(s)(l) ≤ k. This implies |s| ≤ m + k.
2

The exponential preprocessing effort limits the applicability of Algorithm
SESA. Therefore we have developed two variations of Algorithm SESA which
reduce the number of states and transitions computed, while still retaining effi-
cient search for approximate matches.

5.1 Variation 1: Depth Restriction

An important observation for Algorithm SESA is that in a typical situation most
of the states in M are visited very rarely. In particular, the longer a state, the
more unlikely it is to be visited. In this section, we show how to exploit this
observation. The idea is to precompute only a part of M consisting of all states,
whose length is ≤ r for some fixed integer r ≥ 1. This limits the number of
states to 2 · |Σ|r − 1. The key of the method lies in taking care to reenter the
restricted automaton as soon as possible.

9

Definition 13. Let r ≥ 1 and M = (SES ,F , s0, nextstate). The restricted

SES -automaton for Σ, δ, k, and p is the DFA Mr = (SES r,Fr, u
0, nextstater)

where

1. SESr = {u ∈ SES | |u| ≤ r} is the set of states,

2. Fr = F ∩ SESr is the set of accepting states,

3. u0 = ε is the initial state,

4. nextstater : SESr×Σ → SES r is the transition function defined as follows.
If |u| < r, then nextstater(u, b) is the longest suffix of ub that occurs in
SESr. If |u| = r, then nextstater(u, b) is undefined. 2

The restricted SES -automaton processes most of the characters in t just
like the SES -automaton does. However, if u = ses(t1 . . . tj) and |u| = r, then
there is no transition outgoing from state u. In this case, the next characters are
processed by some dynamic programming steps starting with dcol(u) and lcol(u).
This leads to a sequence of pairs (f j′

, gj′

) of distance and length columns. Once
it can be inferred from these columns that |ses(t1 . . . tj′)| ≤ r, the restricted
SES -automaton is reentered. In order to reenter the appropriate state, our
method maintains for each j, 0 ≤ j ≤ n, the longest suffix uj of t1 . . . tj that
occurs in SES r.

Algorithm rSESA Preprocess the restricted SES -automaton for Σ, δ, k, and
p. For each state u ∈ SES r with |u| = r, store dcol(u), lcol(u), and a transition
failurer(u) yielding the longest proper suffix of u that occurs in SES r. Compute
a sequence v0, v1, . . . , vn of values vj ∈ SESr ∪ (SES r × C × C) where v0 = u0

and vj+1 is determined as follows:

1. Suppose vj = uj for some uj ∈ SES r. If |uj | < r, then let uj+1 =
nextstater(u

j , tj+1) and vj+1 = uj+1. Assume that |uj | = r. Then
let uj+1 = nextstater(failurer(u

j), tj+1), f j+1 = nextdcol(dcol(uj), tj+1),
and gj+1 = nextlcol(dcol(uj), lcol(uj), tj+1). If gj+1(lei(f j+1)) ≤ r, then
let vj+1 = uj+1. Otherwise, let vj+1 = (uj+1, f j+1, gj+1).

2. Suppose vj = (uj , f j , gj) for some uj ∈ SESr and some f j , gj ∈ C. Let
uj+1 be as in the previous case. Moreover, let f j+1 = nextdcol(f j , tj+1)
and gj+1 = nextlcol(f j , gj , tj+1). If gj+1(lei(f j+1)) ≤ r, then let vj+1 =
uj+1. Otherwise, let vj+1 = (uj+1, f j+1, gj+1).

For 0 ≤ j ≤ n output j if either vj = uj and uj ∈ Fr or vj = (uj , f j , gj) and
f j(m) ≤ k. 2

Theorem 14. Let q be the number of indices j such that |ses(t1 . . . tj)| ≥ r.
Algorithm rSESA correctly solves the approximate string searching problem in

O(|Σ|r+1 · m + q · m + n) time and O(|Σ|r+1 + |Σ|r · m) space.

10

Proof. Let 0 ≤ j ≤ n and sj = ses(t1 . . . tj). It is straightforward to show that
uj is the longest suffix of t1 . . . tj that occurs in SES r. Moreover, if vj = uj , then
|sj | ≤ r which implies uj = sj . If vj = (uj , f j , gj), then |sj | > r and (f j , gj) ≡
(dcol(sj), lcol(sj)). These properties imply the correctness of rSESA. Mr can
be obtained in a similar way as M , except that the depth first construction of
the states backtracks whenever a state of length r has been constructed. Mr has
2 · |Σ|r − 1 states in the worst case. For each state of length < r, an array of size
|Σ| is stored. For each state of length r, two columns of size O(m) are stored. If
|ses(t1 . . . tj)| ≥ r, then nextdcol and nextlcol are called. Each call takes O(m)
time. 2

The choice of r is very important for the efficiency of rSESA. On the one
hand, the preprocessing effort grows exponentially with r. One the other hand,
q decreases with increasing r. Thus r is a parameter that allows to balance
preprocessing versus search efficiency. Expressing q as a function of r, and
obtaining analytical results to guide the best choice for r, remains a subject of
future work.

5.2 Variation 2: Lazy Construction

The second variation, called lazySESA, applies the technique of lazy evalua-
tion to reduce the number of states and transitions computed. This technique
was already used by Aho in the implementation of egrep (see [2, Section 3.7]).
The idea is to interleave the construction of M with the scanning of the input
string. That is, a transition is constructed immediately before it is to be tra-
versed for the first time. lazySESA works as follows. Let s = sj , b = tj+1

and assume that the transition nextstate(s, b) has not been constructed yet.
It can be constructed as described in case (i) and (ii) above. If s 6= s0, then
in both cases a transition nextstate(failure(s), b) is to be traversed. This may
itself have not been constructed yet. In other words, in order to perform a tran-
sition sj+1 = nextstate(sj , tj+1), there may be one or more transitions to be
constructed. Let qs be the number of states and qt be the number of transitions
constructed by lazySESA. Obviously, qs ≤ qt. Recall that the construction of
a transition nextstate(s, b) leads to a failure-transition. Traversing a failure-
transition consumes at least one character of t. Hence there can be at most n
failure-transitions. As a consequence, we have qt ≤ n.

Theorem 15. Algorithm lazySESA correctly solves the approximate string search-

ing problem in O(qs · |Σ| + qt · m + n) time and O(qs · (|Σ| + m)) space.

Proof. The correctness of lazySESA is clear. For each constructed state s, a Σ-
indexed array is used to store the possible transitions for s. The array requires
O(|Σ|) space. Allocation takes O(|Σ|) time. Note that it is required to store
dcol(s) and lcol(s), whenever there is a character b such that nextstate(s, b) has
not been constructed yet. Hence, for each state O(|Σ|+m) space is required. To
construct a transition nextstate(s, b), we need to evaluate dcol(sb) and lcol(sb).
This takes O(m) time. 2

11

Since lazySESA requires O(n · (|Σ|+ m)) time in the worst case, it does not
improve on Algorithm SEL, in general. However, if k is not too large, then qs

and qt can be considerably smaller than n, thus leading to an improved running
time for lazySESA. Note that the automaton constructed by lazySESA can be
reused for other input strings.

6 Practical Measurements

Algorithms SEL, lazySESA, and rSESA were coded in C. In all implementations
we applied the cutoff trick to reduce dynamic programming steps. Moreover, we
implemented a space optimized variation of Ukkonen’s Algorithm A [18]. This
variation, called UKKA′, does not assume that stree(t) is precomputed. Instead
it processes t online and constructs, in a lazy way, a trie representing those parts
of stree(t) which are actually traversed by Ukkonen’s Algorithm A (for details
see [8]). UKKA′ is easy to implement and it can handle the large input strings
we used in our measurements. This is not true for the algorithms which require a
precomputed suffix tree: To implement stree(t), roughly 4 integers per character
of t are required (see [10]). The additional annotation of stree(t), as used in
Ukkonen’s [18] and in Cobbs’ algorithms [5], takes at least one extra integer
and one boolean per character of t. On a typical current architecture an integer
requires 4 bytes and a boolean 1 byte. This means that the precomputed suffix
tree structure alone requires 21 · n bytes. This is too much when n = 106, as in
our measurements.

Our runtime measurements were performed on a SPARC 10/41 with 32 MB
memory. We used biological sequences. The input string for the first test series
was the complete DNA sequence of chromosome XI of the yeast S. cerevisiae
[6]. Hence n = 666, 448 and Σ = {A, C, G, T}. We used the symmetric transver-
sion/transition weight function δ1, represented by the following weight matrix:

δ1 ε A C G T

ε

A 3 0
C 3 2 0
G 3 1 2 0
T 3 2 1 2 0

Bases A and G are called purine, and bases C and T are called pyrimidine.
The transversion/transition weight function reflects the biological fact that a
purine/purine and a pyrimidine/pyrimidine replacement is much more likely to
occur than a purine/pyrimidine replacement. Moreover, it takes into account
that a deletion or an insertion of a base occurs more seldom. We performed
measurements for different error rates % = (100 · k)/m between 0 and 50. Recall
that k is a weighted threshold and not the number of possible errors. Since the
average non-zero value of δ1 is 2, an error rate % = 50 allows k/2 = (% · m)/(2 ·
100) = 0.25 ·m errors in an approximate match (on the average). Figure 1 shows
the total running times when searching 24 cytochrome P450 sequences of length

12

between 7 and 51. These were selected from the TRRD database. For rSESA
we chose r = 8. UKKA′ ran into space problems for % > 15, and lazySESA for
% > 18. Therefore the corresponding measurements are missing. From Figure
1 we observe that for % ≤ 45, rSESA is faster than SEL. For % ≤ 20 it is more
than twice as fast.

Fig. 1. Running times in seconds for varying error rates and DNA sequences

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50
error rate

SEL
UKKA’
rSESA

lazySESA

The input string for the second test series was a section of 1 million residues
from the PIR database. The underlying alphabet is of size 21, including a wild
card symbol X matching any residue. We transformed the PAM250 scoring
matrix from [15] into a weight function δ2. In particular, if σ(a → b) gives
the PAM250-score of the replacement operation a→ b, a 6= b, then we defined
δ2(a→ b) = −σ(a→ b) + 8. A replacement of the symbol X by any residue was
weighted 0. Indels were weighted 12. We performed measurements for different
error rates % = (100 · k)/m between 0 and 120. Note that % ≥ 100 makes sense,
since the weighted threshold k can be greater than m. Since the average non-
zero value of δ2 is 9.8, an error rate % = 120 allows k/9.8 = (120 ·m)/(9.8 ·100) =
0.12 · m errors in an approximate match (on the average). Figure 2 shows the
total running times when searching 28 cytochrome P450 sequences of length
between 10 and 30. These were selected from the PIR database. For rSESA
we chose r = 4. UKKA′ ran into space problems for % > 48, and lazySESA for
% > 105. Therefore the corresponding measurements are missing. From Figure
2 we observe that for % ≤ 105, Algorithms rSESA and lazySESA are faster than
SEL. For % ≤ 80 they are twice as fast. UKKA′ is considerably slower than SEL.
This may be due to the linked list implementation we used for the set of edges
outgoing from a node in a trie.

Note that in the first test series, Algorithms rSESA and lazySESA perform
relatively better, in comparison to SEL. This may be explained by the fact that
DNA sequences, due to the smaller alphabet, contain more repeated subwords
than protein sequences.

13

Fig. 2. Running times in seconds for varying error rates and protein sequences

0

20

40

60

80

100

120

0 20 40 60 80 100 120
error rate

SEL
UKKA’
rSESA

lazySESA

7 Conclusion

As already observed in measurements of algorithms solving the k-differences
problem (see [7, 8]), no algorithm is the best in all cases. A reasonable solution
is a method which selects the best algorithms on the bases of Σ, δ and the error
rate %: If DNA sequences are searched and δ1 is the cost function, then rSESA
is a good choice for % ≤ 45, and SEL for % > 45. If protein sequences are
searched and δ2 is the cost function, then rSESA or lazySESA is a good choice
for % ≤ 105, and SEL for % > 105.

Note that the programs we measured only compute the positions, where an
approximate match ends. In applications, however, it is often required to report
approximate matches as well. While our implementation can easily be modified
to do so without much extra effort, Sellers’ method additionally has to compute
the lengths columns. Thus, in such applications, our algorithms are likely to
perform even better in comparison to Sellers’ method.

Some questions concerning our methods remain open for research. These
include theoretical analysis of the expected running time as well as comparisons
against the methods in [18, 5]. Our algorithms may be improved further by
applying techniques from [5], or the “Four Russian’s” paradigm [19].

References

1. A. Aho and M. Corasick. Efficient String Matching: An Aid to Bibliographic
Search. Communications of the ACM, 18:333–340, 1975.

2. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and

Tools. Addison-Wesley, Reading, MA, 1985.

14

3. W.I. Chang and J. Lampe. Theoretical and Empirical Comparisons of Approxi-
mate String Matching Algorithms. In Proc. of CPM 92, LNCS 644, pages 175–184,
1992.

4. W.I. Chang and E.L. Lawler. Sublinear Approximate String Matching and Bio-
logical Applications. Algorithmica, 12(4/5):327–344, 1994.

5. A.L. Cobbs. Fast Approximate Matching using Suffix Trees. In Proc. of CPM 95,
LNCS 937, pages 41–54, 1995.

6. B. Dujon et al. The Complete DNA Sequence of Chromosome XI of Saccharomyces
cerevisiae. Nature, 396:371–378, 1994.

7. P. Jokinen, J. Tarhio, and E. Ukkonen. A Comparison of Approximate String
Matching Algorithms. Technical Report A-1991-7, Department of Computer Sci-
ence, University of Helsinki, 1991.

8. S. Kurtz. Fundamental Algorithms for a Declarative Pattern Matching System.
Dissertation, Technische Fakultät, Universität Bielefeld, available as Report 95-03,
1995.

9. G.M. Landau and U. Vishkin. Fast Parallel and Serial Approximate String Match-
ing. Journal of Algorithms, 10:157–169, 1989.

10. U. Manber and E.W. Myers. Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, 22(5):935–948, 1993.

11. E.W. Myers. A Sublinear Algorithm for Approximate Keyword Searching. Algo-

rithmica, 12(4/5):345–374, 1994.

12. E.W. Myers. Algorithmic Advances for Searching Biosequence Databases. In
S. Suhai, editor, Computational Methods in Genome Research, pages 121–135.
Plenum Press, 1994.

13. E.W. Myers. Approximate Matching of Network Expressions with Spacers. J.

Comp. Biol., 3(1):33–51, 1996.

14. E.W. Myers and W. Miller. Approximate Matching of Regular Expressions. Bul-

letin of Mathematical Biology, 51(1):5–37, 1989.

15. W.R. Pearson. Rapid and Sensitive Sequence Comparison with FASTP and
FASTA. In Doolittle, R., editor, Methods in Enzymology, volume 183, pages 63–98.
Academic Press, San Diego, CA, 1990.

16. P.H. Sellers. The Theory and Computation of Evolutionary Distances: Pattern
Recognition. Journal of Algorithms, 1:359–373, 1980.

17. E. Ukkonen. Finding Approximate Patterns in Strings. Journal of Algorithms,
6:132–137, 1985.

18. E. Ukkonen. Approximate String-Matching over Suffix Trees. In Proc. of CPM 93,
LNCS 684, pages 229–242, 1993.

19. S. Wu, U. Manber, and E.W. Myers. A Subquadratic Algorithm for Approximate
Limited Expression Matching. Algorithmica, 15, 1996.

15

