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1.1 INTRODUCTION

In [Burrows and Wheeler, 1994] a universal data compression algorithm (BW-
algorithm, for short) is described which achieves compression rates that are
close to the best known rates. Due to its simplicity, the algorithm can be
implemented with relatively low complexity. Recently [Balkenhol et al., 1999]
modified the BW-algorithm to improve the compression rate even further. For
a thorough discussion on the information theoretic background of the BW-
algorithm and more references, see [Balkenhol and Kurtz, 1998]. The most
time and space consuming part of the BW-algorithm is the Burrows-Wheeler
Transformation (BWT, for short), which permutes the input string in such a
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way that characters with a similar context are grouped together. In [Burrows
and Wheeler, 1994], it was observed that for an input string of length n, this
transformation can be computed in O(n) time and space using suffix trees.
However, suffix trees have a reputation of being very greedy for space, and
therefore most researchers resorted to alternative non-linear methods for com-
puting the BWT: The algorithm of [Manber and Myers, 1993] runs in O(n log n)
worst case time and it requires 8n bytes of space. The algorithm of [Bentley
and Sedgewick, 1997] is based on Quicksort. It is fast on average, but the
worst case running time is O(n2). The Benson-Sedgewick algorithm requires
4n bytes. Its running time can be improved in practice, for the cost of 4n extra
bytes. Recently, [Sadakane, 1998] showed how to combine the Manber-Myers
Algorithm with the Bentley-Sedgewick Algorithm, to achieve a method running
in O(n log n) worst case time and using 9n bytes.

With the recently developed implementation technique of [Kurtz, 1998], suf-
fix trees can be represented more space efficiently, so that the space advantage
of the non-linear methods is considerably reduced. In this paper, we further
improve on [Kurtz, 1998], and show that a suffix tree based method requires on
average about the same amount of space as the non-linear methods mentioned
above. The improvement is achieved by exploiting the fact, that in practice,
the BW-algorithm processes long input strings in blocks of a limited size (for
this reason some researchers use the notion of “Block-Sorting”-algorithm). As-
suming a maximal block size of 221 − 1 = 2,097,151, we show that the suffix
tree can be implemented in 8.83n bytes on average for the files of the Calgary
Corpus. This is 0.6n and 9.77n bytes less than the implementation technique
of [Kurtz, 1998] and of [McCreight, 1976], respectively. The worst case space
requirement of our implementation technique is 16n bytes, compared to 20n

bytes for [Kurtz, 1998] and 28n bytes for [McCreight, 1976]. The reduction
of the space requirement due to an upper bound on n seems trivial. How-
ever, we will see that it involves a considerable amount of engineering work to
achieve the improvement, while retaining the linear worst case running time for
constructing the BWT.

This paper is organized as follows: In Section 1.2 we introduce some basic
notions. Section 1.3 describes how to implement suffix trees space efficiently.
In Section 1.4, we show how to read the BWT from the suffix tree. Section 1.5
reports on experimental results.

1.2 PRELIMINARIES

Let Σ be a finite ordered set, the alphabet. k denotes the size of Σ. We assume
that x is a string over Σ of length n ≥ 1 and that $ ∈ Σ is a character such
that for any i ∈ [1, n] we have xi < $. For any i ∈ [1, n + 1], let Si = xi . . . xn$
denote the ith non-empty suffix of x$. Let Sj1 , Sj2 , . . . , Sjn+1

be the sequence
of all non-empty suffixes of x$ in lexicographic order. This gives a bijective
mapping ϕ : [1, n + 1] → [1, n + 1] defined by ϕ(i) = ji. ϕ is the suffix order
on x$. Note that ϕ(n + 1) = n + 1, since Sn+1 = $. The Burrows and Wheeler



Figure 1.1 The suffix tree for x = abab. Leaves are annotated with leaf numbers and

branching nodes with head positions.
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Transformation of x is the string x̃ of length n+1 such that for any i ∈ [1, n+1]
we have x̃i = $ if ϕ(i) = 1, and x̃i = xϕ(i)−1 otherwise.

A Σ+-tree T is a finite rooted tree with edge labels from Σ+. For each
a ∈ Σ, a node u in T has at most one a-edge u av-w for some string v and
some node w. Let u be a node in T . We denote u by w if and only if w is
the concatenation of the edge labels on the path from the root to u. The node
ε is the root . depth(w) := |w| is the depth of w. A string s occurs in T if T

contains a node sv, for some string v.

1.3 SUFFIX TREES AND THEIR IMPLEMENTATION

The suffix tree for x, denoted by ST, is the Σ+-tree T with the following
properties: (i) each node is either a leaf, a branching node, or the root , and
(ii) a string w occurs in T if and only if w is a substring of x$.

ST can be constructed and represented in linear time and space using one
of the algorithms described in [Weiner, 1973, McCreight, 1976, Ukkonen, 1995,
Farach, 1997]. See also [Giegerich and Kurtz, 1997] which reviews [Weiner,
1973, McCreight, 1976, Ukkonen, 1995] and reveals relationships between these
algorithms much closer than one would think. The suffix link for a node aw

in ST is an unlabeled directed edge from aw to the node w. Note that the
latter exists in ST, whenever aw exists. We consider suffix links to be a part
of the suffix tree, since they are required for most of the linear time suffix tree
constructions (see [Weiner, 1973, McCreight, 1976, Ukkonen, 1995]). For any
branching node aw in ST, suffixlink(aw) refers to node w.

The raison d’etre of a branching node w in ST is the first branching occur-
rence of w in t, i.e., the first occurrence of wa, for some a ∈ Σ, such that w

occurs to the left, but not wa. We therefore introduce the notions head and
head position: Let head1 = ε and for i ∈ [2, n+1] let headi be the longest prefix
of Si which is also a prefix of Sj for some j ∈ [1, i − 1]. For each branching
node w in ST, let headposition(w) denote the smallest integer i ∈ [1, n+1] such
that w = headi. If headposition(w) = i, then we say that the head position of
w is i. Since there is a one-to-one correspondence between the heads and the
branching nodes in ST (see [Kurtz, 1998]), the notion of head positions is well
defined. Figure 1.1 shows the suffix tree for x = abab.



The head position j of some branching node wu tells us that the leaf Sj

occurs in the subtree below node wu. Hence wu is the prefix of Sj of length
depth(wu), i.e., the equality wu = xj . . . xj+depth(wu)−1 holds. As a conse-
quence, the label of the incoming edge to node wu can be obtained by dropping
the first depth(w) characters of wu, where w is the predecessor of wu: If w u- wu

is an edge in ST and wu is a branching node, then we have u = xi . . . xi+l−1

where i = headposition(wu) + depth(w) and l = depth(wu) − depth(w). Simi-
larly, the label of the incoming edge to a leaf is determined from the leaf number
and the depth of the predecessor: If w u-wu is an edge in ST and wu = Sj for
some j ∈ [1, n + 1], then u = xi . . . xn$ where i = j + depth(w).

It is straightforward to show that for any branching node aw in ST either
headposition(aw)+1 = headposition(w) or headposition(aw) > headposition(w)
holds, see [Kurtz, 1998]. As a consequence, we can discriminate all non-
root nodes accordingly: aw is a small node if and only if headposition(aw) +
1 = headposition(w). aw is a large node if and only if headposition(aw) >

headposition(w). The root is neither small nor large.
Let b1, b2, . . . , bq be the sequence of branching nodes ordered by their head

position, i.e., headposition(bi) < headposition(bi+1) for any i ∈ [1, q− 1]. Obvi-
ously, b1 is the root . One can show that a small node in this sequence is always
immediately followed by another branching node, and that bq is a large node,
see [Kurtz, 1998]. We can thus partition the sequence b2, . . . , bq of branching
nodes into chains of zero or more consecutive small nodes followed by a sin-
gle large node. More precisely, a chain is a contiguous subsequence bl, . . . , br,
r ≥ l, of b2, . . . , bq such that (i) bl−1 is not a small node, (ii) bl, . . . , br−1 are
small nodes, and (iii) br is a large node.

One easily observes that any non-root branching node in ST is a member
of exactly one chain. The following lemma, which is proved in [Kurtz, 1998],
shows an interesting relationship between the small nodes and the large node
of a chain:

Lemma 1 Let bl, . . . , br be a chain. The following properties hold for any
i ∈ [l, r − 1]:

(1) suffixlink(bi) = bi+1

(2) depth(bi) = depth(br) + (r − i)

(3) headposition(bi) = headposition(br) − (r − i)

According to this observation, it is not necessary to store suffixlink(bi),
depth(bi), and headposition(bi) for any small node bi. suffixlink(bi) refers to
the next node in the chain, and if the distance r − i of bi to the large node br

(denoted by distance(bi)) is known, then depth(bi) and headposition(bi) can be
obtained in constant time. This observation allows the following implementa-
tion technique: ST is represented by two tables Tleaf and Tbranch which store
the following values: For each leaf number j ∈ [1, n + 1], Tleaf [j] stores a refer-
ence to the right brother of leaf Sj . If there is no such brother, then Tleaf [j] is



a nil reference. Leaf Sj is referenced by leaf number j. Table Tbranch stores the
information for the small and the large nodes: For each small node w, there is a
small record which stores distance(w), firstchild (w), and rightbrother (w). The
latter two are references to the first child of w and to the right brother of w,
respectively. If there is no such brother of w, then rightbrother (w) is a nil ref-
erence. For any large node w there is a large record which stores firstchild (w),
rightbrother (w), depth(w), and headposition(w). It also stores suffixlink(w),
whenever depth(w) ≤ 211 − 1. The successors of a branching node are there-
fore found in a list whose elements are linked via the firstchild , rightbrother ,
and Tleaf references. To speed up the access to the successors, each such list is
ordered according to the first character of the edge labels.

To guarantee constant time access from a small node bi to the large node
br, all records consist of integers (the general assumption is that an integer
occupies 4 bytes or equivalently 32 bits). The integers are stored in table
Tbranch , ordered by the head positions of the corresponding branching nodes.
All branching nodes are referenced by their base address in Tbranch . The base
address is the index of the first integer of the corresponding record. Since there
are at most n large nodes in ST, the maximal base address is 3n−3. A reference
is either a base address or a leaf number. To distinguish these, we store a base
address as an integer with offset n+1, i.e., base address i is stored as n+1+ i.
So a reference is smaller than 4n, and if n ≤ 221 − 1, then it occupies 23 bits.
Each depth and each head position occupies at most 21 bits.

Consider the range of the distance values. In the worst case, take e.g. x = an,
there is only one chain of length n−1, i.e., the maximal distance value is n−2.
However, this case is very unlikely to occur. To save space, we delimit the
maximal length of a chain to 65536. As a consequence, after at most 65535
consecutive small nodes an “artificial” large node is introduced, for which we
store a large record. In this way, we delimit the distance value to be at most
65535, and thus the distance occupies 16 bits, which are stored with the two
integers occupied by a small record. Thus we trade a delimited distance value
for the saving of one integer for each small record.

Now let us consider how to store the values of a large record. The first
two integers of a large record store the firstchild reference and the rightbrother
reference, as in a small record. We need just one extra integer to store the
remaining values of a large record: Consider some large node, say w, and let
v be the rightmost child of w. There is a sequence consisting of one firstchild
reference and at most k − 1 rightbrother/Tleaf references which link w to v.
If v = Sj for some j ∈ [1, n + 1], then Tleaf [j] is a nil reference. Otherwise,
if v is a branching node, then rightbrother (v) is a nil reference. Of course, it
only requires one bit to mark a reference as a nil reference. Hence the integer
used for the nil reference contains unused bits, in which we store suffixlink(w).
As a consequence, retrieving the suffix link of w requires traversing the list
of successors of w until the nil reference is reached, which encodes the suffix
link of w. This linear retrieval of suffix links takes O(k) time in the worst
case. However, despite linear retrieval, the suffix tree can still be constructed



in O(kn) time, since suffix links are retrieved at most n times during suffix tree
construction (see [McCreight, 1976, Kurtz, 1998]).

Experiments show that linear retrieval may slow down suffix tree construc-
tion in practice. For this reason, we use the following method which makes
linear retrieval of suffix links an exception: Whenever the depth of a large node
does not exceed 211 − 1 = 2047, we mark this fact and use the remaining bits
of the corresponding large record to also store the suffix link. This can later be
retrieved in constant time. For those large nodes whose depth exceeds 2047,
linear traversal of suffix links is required. But those nodes are usually very rare,
and if they occur, then the number of their successors is expected to be small.
Hence the linear retrieval of suffix links is expected to be fast.

A small record stores two references (2 · 23 bits), a distance value (16 bits),
one small/large bit to mark whether the first integer is part of a small or a
large record, and one nil bit to mark a reference as a nil reference. Altogether,
a small record occupies 64 bits which fit into two integers. A large record, say
for a large node w, stores two references, one nil bit, one small/large bit, and
one small depth bit which tells whether the depth is at most 211 −1. Moreover,
there are 21 bits required for the head position, and 11 or 21 bits for the depth,
depending on whether the small depth bit is set or not. Thus a large record
requires 81 or 91 bits, which fit into three integers. If the depth of w is at most
211 − 1, there are 15 unused bits in the large record. These are used to store
the suffix link. The remaining 8 bits of the suffix link for w are stored in the
integer Tleaf [headposition(w)]. Recall that this stores a reference (23 bits) and
one nil bit.

Let σ be the number of small records and λ be the number of large records.
Thus table Tbranch requires 2σ + 3λ integers. Table Tleaf occupies n integers,
and hence the space requirement of our implementation technique is n+2σ+3λ

integers. The implementation technique of [Kurtz, 1998] requires n + 2σ + 4λ

integers (for n ≤ 227 − 1), while a previous implementation technique (see
[McCreight, 1976]) requires 2n+5(σ+λ) integers. In the worst case λ = n and
σ = 0.

The proposed suffix tree representation can be constructed in linear time,
using the algorithm of [McCreight, 1976]. The basic observation is that this
algorithm constructs the branching nodes of ST in order of their head positions,
which is compatible with our implementation technique. For details, see [Kurtz,
1998].

An alternative representation of the suffix tree uses a hash table to store
the edges, as recommended in [McCreight, 1976]. Unfortunately, this represen-
tation does not directly allow the depth first traversal to run in linear time.
As already remarked in [Larsson, 1998], an additional step is required to sort
the edges lexicographically. This can be done by a bucket sorting algorithm,
and thus requires linear time. In [Kurtz, 1998] it is shown that in practice this
approach requires about 60% more space than the proposed linked list imple-
mentation, and it leads to a faster sorting procedure only if the alphabet is
very large.



1.4 DEPTH FIRST TRAVERSAL

Due to the one-to-one correspondence between the leaves of ST and the non-
empty suffixes of x$, the BWT can be read from ST by a simple depth first
traversal. This processes the edges outgoing from some branching node w in
order <w which is defined by w au- wau <w w cv- wcv ⇐⇒ a < c. It
is obvious that such a depth first traversal visits leaf Si before leaf Sj if and
only if Si < Sj . Thus the suffix order ϕ(1), ϕ(2), . . . , ϕ(n + 1) on x$ is just
the list of suffix numbers encountered at the leaves during the traversal. The
linked list implementation of Section 1.3 allows the depth first traversal to run
in O(n) time. The only extra space required is for a stack storing references to
the predecessors of a branching node. The stack occupies at most rmax integers
where rmax is the length of the longest repeated substring of x.

The depth first traversal constructs x̃ from left to right. Whenever it visits
a leaf Sj , j > 1, it has found the next character xj−1 of x̃. It stores this
character and proceeds with the right brother of Sj (if it exists). Thus xj−1 is
accessed immediately before Tleaf [j]. Now recall that the integer Tleaf [j] stores
a reference and a nil bit, occupying 24 bits together. The 8 bits storing a part
of the suffix link of the father (if this is a large node and Sj is the rightmost
child) are not needed during the depth first traversal. For this reason, we store
character xj−1 (which occupies 8 bits) in the unused bits of Tleaf [j]. This can
be done very efficiently in one sweep over x and Tleaf before the depth first
traversal. As a consequence, x is no longer accessed in a “random” fashion,
which improves the cache coherence of the program and therefore its running
time in practice. Moreover, during the traversal the space for the input string
x can be reclaimed to store x̃.

1.5 EXPERIMENTAL RESULTS

We used the programming language C to implement the techniques proposed
here. The resulting program computes the BWT, and is referred to by stbwt.
In order to compare stbwt with the Manber-Myers and the Benson-Sedgewick
algorithm, we modified the original code of [Manber and Myers, 1993] and
[Bentley and Sedgewick, 1997], since these only compute the suffix order. The
program derived from [Manber and Myers, 1993], referred to by mamy, requires
8n bytes. We developed two programs based on [Bentley and Sedgewick, 1997]:
bese1 applies the Benson-Sedgewick algorithm to all suffixes of the input string.
It requires 4n bytes. bese2 first uses bucket sort to presort all suffixes according
to their first l = blogk nc characters. Then it applies the Benson-Sedgewick
algorithm independently to all groups of suffixes whose prefix of length l is
identical. This presorting step runs in linear time, but it requires 4n extra
bytes. Thus the space requirement of bese2 is 8n bytes. Unfortunately, the
program of Sadakane is not available, and so we cannot compare it to stbwt.
However, experiments in [Sadakane, 1998] show that Sadakane’s algorithm is
on average slightly slower than a suffix tree based method implemented by
Larsson.



mamy bese1 bese2 stbwt

file length k time time time time space

bib 111261 81 4.13 0.60 0.49 0.71 8.87

book1 768771 82 35.72 6.08 4.39 8.62 8.92

book2 610856 96 28.93 4.45 3.30 5.67 8.96

geo 102400 256 2.38 0.36 0.30 1.87 6.83

news 377109 98 27.39 2.80 2.24 4.54 8.84

obj1 21504 256 0.39 0.21 0.20 0.11 7.14

obj2 246814 256 10.99 1.56 1.33 2.46 8.80

paper1 53161 95 1.15 0.20 0.17 0.28 9.09

paper2 82199 91 2.45 0.34 0.27 0.51 9.01

pic 513216 159 29.61 190.86 192.18 2.44 8.67

progc 39611 92 0.73 0.15 0.12 0.20 8.93

progl 71646 87 2.32 0.48 0.43 0.34 9.69

progp 49379 89 1.52 0.53 0.50 0.21 9.81

trans 93695 99 6.35 1.03 0.96 0.44 10.06

3141622 154.04 209.66 206.87 28.40 8.83

Table 1.1 Running times (in seconds) and Space Requirement (bytes/input character)

We applied all four programs to the 14 files of the Calgary Corpus. Table
1.1 shows the lengths and the alphabet sizes of the files and the running times
in seconds on a computer with a Pentium MMX Processor (166 MHz, 32 MB
RAM). The last column shows the total space requirement for stbwt in bytes
per input character. In each row, the shortest running time is shown in a grey
box. The last row gives the total file length, the total running times, and the
average space requirement for stbwt. The table shows that mamy is the slowest
program. Except for the file pic it is always considerably slower than the other
programs. bese1 is always slower than bese2. Both are faster than stbwt for
the same 9 files, but the advantage is small (mostly within a factor of two).
However, bese1 and bese2 are very slow for the file pic which contains long
repeated substrings. This clearly reveals the poor worst case behavior of the
Benson and Sedgewick algorithm. For most files, stbwt requires about n bytes
more space than mamy and bese2. For pic and obj1 it requires even less space.

Acknowledgements. We thank Gene Myers for providing a copy of his pro-
gram code.
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