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1 Introduction

While considerable effort and some progress has been made on developing an
analytic formula for the probability of an approximate match, such work has
not achieved fruition [4, 6, 2, 1]. Therefore, we consider here the development of
an unbiased estimation procedure for determining said probability given a spe-
cific string P ∈ Σ∗ and a specific cost function δ for weighting edit operations.
Problems of this type are of general interest, see for example a recent paper [5]
giving an unbiased estimator for counting the words of a fixed length in a reg-
ular language. We were further motivated by a particular application arising in
the pattern matching system Anrep designed by us for use in genomic sequence
analysis [8, 11]. Anrep accomplishes a search for a complex pattern by back-
tracking over subprocedures that find approximate matches. The subpatterns
are searched in an order that attempts to minimize the expected running time
of the search. Determining this optimal backtrack order requires a reasonably
accurate estimate of the probability with which one will find an approximate
match to each subpattern. Given that the probabilities involved are frequently
10−6 or less, the simple expedient of measuring match frequency over a random
text of several thousand characters has been less than satisfactory. The unbiased
estimator herein is shown to give good results in a matter of a thousand samples
even for small probability patterns. Thus it is expected to improve the perfor-
mance of Anrep and may have utility in estimating the significance of similarity
searches.

Proceeding formally, suppose we are given

– a pattern string P = p1p2 . . . pm ∈ Σ∗,

– an integer cost function δ, and

– a match threshold k ∈ N0.

? Research done while visiting the University of Arizona, partially supported by NLM
grant LM-4960.

?? Partially supported by NLM grant LM-4960.



Let Ak(P, T ) denote the event that P can be aligned to a prefix of text T
with cost k or less. We seek Pr [Ak(P, T )] under the distributional assumption
that T is generated by independent, uniform Bernoulli trials over the alphabet
Σ. Our results depend on δ satisfying the following two conditions:

δ(a→ε) + δ(ε→b) ≥ δ(a→b) ≥ 0 (1)

δ(ε→b), δ(a→ε) > 0 (2)

where a→ε denotes the deletion of the character a, a→b denotes the replacement
of the character a by the character b, and ε → b denotes the insertion of the
character b. These conditions are generally met by the scoring schemes required
in most applications, and if not, one can usually transform the scoring scheme
to one satisfying them. Note that δ may otherwise be any cost function over the
integers.

Let the condensed k-neighborhood of P , CNk(P ), be the set of all strings
approximately matching P within threshold k, less those that have another such
string as a prefix. Because the occurrence of each string in CNk(P ) as a prefix
of T is an independent event, it immediately follows that

Pr [Ak(P, T )] =
∑

v∈CNk(P )

1

|Σ||v|

Unfortunately, the size of CNk(P ) grows exponentially with the threshold value,
quickly rendering direct computation by enumerating CNk(P ) hopelessly inef-
ficient. Thus we turn to developing a Monte-Carlo algorithm that estimates
Pr [Ak(P, T )] by sampling a subset of CNk(P ). The difficulty immediately en-
countered is that a direct procedure for sampling CNk(P ) appears formidable if
not impossible. So instead we turn to sampling a surrogate space, Sk(P ), of edit
scripts of cost k or less that convert P into strings it approximately matches.
The set Sk(P ) can be any set of edit scripts provided that it is efficiently enu-
merable and complete in that for every v ∈ CNk(P ), there is at least one edit
script s ∈ Sk(P ) that when applied to P generates s(P ) = v.

The difficulty to be overcome in sampling the surrogate space Sk(P ) is that
there is not a one-to-one correspondence between its edit scripts and the strings
in CNk(P ). Some strings in CNk(P ) may be generated by several distinct edit
scripts in Sk(P ) and some edit scripts in Sk(P ) may not even generate strings in
CNk(P ). This bias is removed by considering the random variable X : Sk(P ) →
R

+
0 defined by:

X(s) =

{ 1
|Σ||v|g(v)

if v ∈ CNk(P )

0 otherwise

where v = s(P ), and g(v), called the cluster size of v, is the number of edit
scripts in Sk(P ) that generate the string v. That X removes the bias is the
claim of our central lemma:

Lemma 1. Suppose Sk(P ) is uniformly distributed. Then the expected value

E[X ] of X is Pr [Ak(P, T )] /|Sk(P )|.
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Proof.

E[X ] =
∑

s∈Sk(P )

X(s)
|Sk(P )|

= 1
|Sk(P )| ·

∑

s∈Sk(P )

{

1
|Σ||v|g(v)

| s(P ) ∈ CNk(P ), v = s(P )
}

= 1
|Sk(P )| ·

∑

v∈CNk(P )

{

1
|Σ||v|g(v)

| s ∈ Sk(P ), s(P ) = v
}

= 1
|Sk(P )| ·

∑

v∈CNk(P )

g(v)
|Σ||v|g(v)

= 1
|Sk(P )| ·

∑

v∈CNk(P )

1
|Σ||v|

= Pr[Ak(P,T )]
|Sk(P )|

Our unbiased estimation procedure thus consists of

– selecting a suitably large set of samples from Sk(P ) with uniform probability,
– computing the average of X(s) over the samples s, and
– multiplying the average by |Sk(P )|.

While the procedure, in outline, is quite simple, the remainder of this paper
addresses how to define Sk(P ) and how to solve the algorithmic sub-problems
involved in an efficient realization with respect to this definition. Section 2 intro-
duces as our choice for Sk(P ) the set of what we call the condensed, canonical edit

scripts. Our choice attempts to keep small, both (i) the number of edit scripts
for which X(s) = 0, and (ii) the size of g(v). Doing so improves the convergence
of the estimator as it places Sk(P ) and CNk(P ) in closer correspondence. The
remaining sections present dynamic programming algorithms for the following
subtasks:

Section 3: Determining the size of Sk(P ) in O(|Σ|mk) time.
Section 4: Selecting an edit script from Sk(P ) with uniform probability in

O(|Σ|(m + k)) time.
Section 5: Deciding if s ∈ Sk(P ) generates a string s(P ) ∈ CNk(P ) in O(m ·

min(m, k)) time.
Section 6: Computing the cluster size g(v) in O(∆ ·m ·min(m, k)) time, where

∆ ∈ [1, k + 1] is depending on δ and P .

Altogether, our Monte-Carlo algorithm achieves a running time of
O(|Σ|mk + t(|Σ|m + |Σ|k + ∆ · m · min(m, k))) and requires O(mk) space where
t is the number of samples collected. If δ is the unit cost function that scores
all mismatches, insertions, and deletions as 1, the running time further improves
to simply O(tmk). The paper concludes with Section 7 that presents empirical
results demonstrating the accuracy of the estimates, the rate of convergence of
the sampling process, and the speed of the procedure.

In the context of scanning a text, our estimator above gives the probability
that a match begins at a specific position in the text. However, these events are
not independent. One match may significantly condition a match at the next
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position. To estimate the number of such “clumps”, one needs to compute the
probability that a match begins at a position and there is no overlapping match
to the left of it. Addressing this issue is beyond the scope of this paper. The
current result is still of value as it overestimates this probability and in the
context of our Anrep application these probabilities are small enough that the
clump size is almost always one, so the overestimation is slight.

We close the introduction by noting that our treatment is extensible to pat-
terns that are network expressions [11] (regular expression without Kleene clo-
sure), and to models of the text where characters are generated by a weighted
Bernoulli process. We do not directly treat these extensions in this paper, as
they complicate the treatment and obscure the basic ideas.

2 Condensed, Canonical Edit Scripts

Approximate matches are typically characterized as an alignment or trace be-
tween P and a string that it matches. In our context we must turn to the
equivalent operational view of an edit script that transforms P into the string
it matches as originally introduced, for example, in the seminal work of Wagner
and Fischer [13]. There are three kinds of edit operations: a → ε denotes the
deletion of the character a, a→b denotes the replacement of the character a by
the character b, and ε→b denotes the insertion of the character b. An edit script
for P = p1p2 . . . pm is a list s = [α1→β1, α2→β2, . . . , αr→βr] of edit operations
for which r ≥ m and P = α1 · α2 · . . . · αr when one interprets ε as denoting the
empty string. P is viewed as the source string and the application of the edit
script s results in the target string s(P ) = β1 · β2 · . . . · βr. We further say that
s generates the string s(P ). The correspondence between edit scripts and align-
ments is immediate given the observation that each edit operation corresponds
to an alignment column.

The underlying cost function δ assigns a non-negative integer cost,
δ(α → β), to each edit operation α → β. Recall that in addition to integral-
ity, we are assuming that (1) and (2), given in the introduction, hold. The cost

δ(s) of an edit script s = [α1→β1, α2→β2, . . . , αr →βr] is the sum of the costs
of its edit operations, i.e., δ(s) =

∑r
i=1 δ(αi→βi). We say that s is a (P, l) edit

script if s is an edit script for P of cost l. The edit distance between P and
v ∈ Σ∗, denoted by δ(P, v), is the minimal cost over all edit scripts for P that
generate v. An edit script s for P is optimal if δ(s) = δ(P, s(P )).

Given P and k ≥ 0, the k-neighborhood of P is the set of all strings matching
P with cost k or less, i.e., Nk(P ) = {v ∈ Σ∗ | δ(P, v) ≤ k}. In order to remove
dependent events, we restrict our attention to the condensed k-neighborhood,
CNk(P ), which is defined by

CNk(P ) = {v ∈ Nk(P ) | ∀ proper prefixes v′ of v, v′ /∈ Nk(P )}

Note that ε ∈ Nk(P ) implies Pr [Ak(P, T )] = 1. Hence we do not need to
estimate Pr [Ak(P, T )] whenever k is greater or equal to the cost of deleting every
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character in P . This implies that k = O(m) in the cases of interest, assuming δ
is a constant.

Recall that we will effectively be sampling CNk(P ) by sampling the surrogate
space Sk(P ) and applying the random variable X to each sample. We could
simply choose to let Sk(P ) be the set of all (P, l) edit scripts for l ≤ k. However,
the convergence rate of the estimator improves, the tighter the correspondence
between the set of sampled edit scripts and the condensed k-neighborhood. We
develop a much smaller but still complete set of edit scripts in a progression of
three observations below.

First, we remove easily detectable non-optimal or redundant edit scripts.
An edit script is called canonical if it does not contain a sublist of the form:
[a→ ε, ε→ b], [ε→ b, a→ ε], [a → ε, a→ b], or [ε→ b, a→ b] for some a, b ∈ Σ.
Such sublists are called forbidden.1 Intuitively, canonical edit scripts can be
characterized by the following properties:

– A replacement is preferred over a deletion/insertion or insertion/deletion
combination.

– If the source string contains a substring of the same character, then only the
rightmost instances in the substring are deleted (if any).

– If the edit script generates a substring of the same character in the target
string, then only the rightmost instances are generated by an insertion (if
any).

Let Cl(P ) be the set of canonical (P, l) edit scripts. Provided that δ satisfies
(1), limiting our attention to canonical edit scripts is conservative as every non-
canonical edit script s can be transformed into a canonical edit script s′ such
that s(P ) = s′(P ) and δ(s′) ≤ δ(s) holds. Thus we have

⋃

l≤k

⋃

s∈Cl(P ){s(P )} =

Nk(P ).
The second observation is that any edit script ending with an insertion,

generates a shorter word at lesser cost if the final insertion is dropped from the
edit script. Thus, any such edit script cannot generate a string in CNk(P ) as
it does not contain strings that have proper prefixes matching P at lesser cost.
Let a condensed, canonical edit script be a canonical edit script that does not
end with an insertion. Let CCl(P ) be the set of condensed, canonical (P, l) edit
scripts. We may restrict our attention to

⋃

l≤k CCl(P ) as it is complete w.r.t.
CNk(P ), i.e.,

⋃

l≤k

⋃

s∈CCl(P ){s(P )} ⊇ CNk(P ).

Finally, observe that while the edit distance between a string v ∈ CNk(P )
and P may be less than k, there must be a lower bound as one could replace
the last non-deletion operation in an edit script generating v optimally with a

1 One could generalize the idea of a canonical edit script to those that do not contain
forbidden sublists of length 3, or 4, etc. The marginal rate at which these higher-
order schemes eliminate redundant edit scripts diminishes rapidly, while the cost of
sampling them grows exponentially in time. Thus we present only a second order
scheme here, both because it is most practical and also for the sake of keeping the
exposition simple. However, it is worth noting that if one goes to an m-order scheme,
then CNk(P ) and canonical edit scripts correspond one-to-one.
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deletion operation for some bounded increase in cost. Indeed, carrying this train
of thinking to its furthest degree, one arrives at the following lemma:

Lemma 2. For any v ∈ CNk(P ), δ(P, v) > k − ∆ where

∆ = max
{

δ(pi→ε) − δ(pi→b) | i ∈ [1, m], b ∈ Σ,
∑m

r=i+1δ(pi→ε) ≤ k − δ(pi→b)
}

Proof. Let v ∈ CNk(P ). We have v = wb for some w ∈ Σ∗ and some b ∈ Σ. Let

s be an optimal edit script for P generating v. Then s 6= [ ], δ(s) = δ(P, v) ≤ k,

and the last edit operation in s is not an insertion. It is easy to show that there is

an i ∈ [1, m] and b ∈ Σ such that s = s′ · [pi→b] ·s′′ where s′ is an edit script for

p1p2 . . . pi−1 generating w, and s′′ is a maximal suffix of s consisting of deletions

only. We have δ(s′′) + δ(pi → b) ≤ δ(s) ≤ k, and therefore
∑m

r=i+1 δ(pr → ε) =
δ(s′′) ≤ k−δ(pi→b), which implies ∆ ≥ δ(pi→ε)−δ(pi→b). Since s′ ·[pi→ε]·s′′

is an edit script for P generating w, we get δ(s′) + δ(pi→ε) + δ(s′′) ≥ δ(P, w).
Hence

δ(P, v) = δ(s′) + δ(pi→b) + δ(s′′)
≥ δ(P, w) − δ(pi→ε) + δ(pi→b)
> k − (δ(pi→ε) − δ(pi→b))
≥ k − ∆

To conclude, let

CC(P ) =

k
⋃

l=Φ

CCl(P )

where Φ = k − ∆ + 1. This set of edit scripts is our choice in this paper for
Sk(P ). Note that CC(P ) is an appropriate choice for the sampling surrogate as
it is complete w.r.t. CNk(P ), i.e.,

⋃

s∈CC(P ){s(P )} ⊇ CNk(P ).

3 Counting Edit Scripts

We first consider how to enumerate canonical edit scripts. To do so, we split the
set of all canonical edit scripts into three classes according to the last edit oper-
ation in each edit script. This gives us the control we need to avoid enumerating
edit scripts containing a forbidden sublist.

Definition 1. For each i ∈ [0, m], each l ∈ [0, k], and each b ∈ Σ define:

D(l, i) = {s ∈ Cl(p1p2 . . . pi) | s ends with a deletion}
R(l, i) = {s ∈ Cl(p1p2 . . . pi) | s = [ ] or s ends with a replacement}
Ib(l, i) = {s ∈ Cl(p1p2 . . . pi) | s ends with the insertion ε→b}
I(l, i) = {s ∈ Cl(p1p2 . . . pi) | s ends with an insertion}

If l < 0, we define D(l, i) = R(l, i) = Ib(l, i) = I(l, i) = ∅.
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From the definitions it follows that CC(P ) =
⋃k

l=Φ D(l, m) ∪ R(l, m). It
remains to develop recurrences describing each class of edit scripts. Note that the
class of edit scripts ending with an insertion are further decomposed according
to the character b inserted. This is required so that, in the recurrences below, we
can avoid composing edit scripts that follow the insertion of b with a substitution
of b (see the equation for R(l, i) below).

Lemma 3. For i, l ≥ 0, the following recurrences hold:

D(l, i) = (D(l′, i − 1) ∪ R(l′, i − 1)) · [pi→ε] where l′ = l − δ(pi→ε)

R(l, i) =
⋃

b∈Σ

((D(lb, i − 1) if i > 1 and pi−1 6= pi) ∪

(I(lb, i − 1) − Ib(l
b, i − 1)) ∪

R(lb, i − 1)) · [pi→b] where lb = l − δ(pi→b)

Ib(l, i) = (I(l′, i) ∪ R(l′, i)) · [ε→b] where l′ = l − δ(ε→b)

I(l, i) =
⋃

b∈Σ

Ib(l, i).

subject to the boundary conditions: D(l, 0) = ∅ and R(l, 0) = (if l = 0 then

{[ ]} else ∅). The notation X · a where X is a set of edit scripts and a is an

edit operation, denotes the set {x · a | x ∈ X}. The symbol “·” denotes the

concatenation of edit scripts.

With the recurrences above it is now a simple exercise to reformulate them to
count the number of edit scripts, as opposed to enumerating them. We compute
three (k + 1) × (m + 1)-tables: ND(l, i) = |D(l, i)|, NR(l, i) = |R(l, i)|, and
NI(l, i) = |I(l, i)| for l ∈ [0, k] and i ∈ [0, m]. Note that we make the small
optimization of not storing the number of edit scripts in Ib(l, i) for each b ∈ Σ,
as it requires only constant time to compute these numbers on demand given the
other entries. This saves us a factor of |Σ| space without any penalty in time.
We now have

|CC(P )| =

k
∑

l=Φ

ND(l, m) + NR(l, m)

Thus it follows:

Lemma 4. |CC(P )| can be evaluated in O(|Σ|mk) time and O(mk) space. This

further improves to O(mk) time when δ is the unit cost function.

4 Uniformly Sampling Edit Scripts

We begin by noting that each edit script in CC(P ) can be obtained by tracing
back through the recurrences given in the previous section, thereby producing an
edit script from right to left. In order to sample CC(P ) uniformly, one must select
a traceback branch with probability proportional to the number of possibilities
the chosen branch can generate. That is, if there are r branch possibilities and
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branch i leads to Ci possible finishes, then branch i should be chosen with
probability Ci/

∑r
l=1 Cl.

As a concrete example, suppose that we have thus far chosen a suffix s for
which D(l, i) · s ⊆ CC(P ). We wish to uniformly sample a finishing prefix from
D(l, i). Following the recurrence for D(l, i), we prepend [pi→ε] to s and decide
to either complete the result with an edit script from D(l′, i−1) with probability
ND(l′, i − 1)/ND(l, i), or with an edit script from R(l′, i − 1) with probability
NR(l′, i − 1)/ND(l, i) where l′ = l − δ(pi → ε). As one further example, the
sampling process starts with a decision to either generate the edit script from
D(l, m) with probability ND(l, m)/|CC(P )|, or from R(l, m) with probability
NR(l, m)/|CC(P )| where l ∈ [Φ, k].

Recall that insertions have cost 1 or more (see (2)). Thus the longest possible
edit script in CC(P ) is of length not greater than m + k. Moreover, from the
structure of the recurrences above it is easy to see that at each traceback point
there are never more than O(|Σ|) branches. Thus it follows:

Lemma 5. Given the dynamic programming tables for counting edit scripts de-

scribed in Section 3, an edit script s ∈ CC(P ) can be selected with uniform

probability in time O(|Σ|(m+k)). This further improves to O(m+k) time when

δ is the unit cost function.

5 Deciding Condensed Neighborhood Membership

Suppose we have selected s from CC(P ). We next wish to know if v = s(P )
is in CNk(P ). To do so, consider performing a standard sequence comparison
(cf. [13]) between P and v. That is, consider computing the (m + 1) × (n + 1)
table E(i, j) = δ(p1p2 . . . pi, v1v2 . . . vj) where n = |v|. Observe that E(m, n) =
δ(P, v) = δ(P, s(P )) ≤ δ(s) ≤ k, confirming that v is in Nk(P ). If v is in CNk(P ),
then it must further be true that no prefix of v is in the k-neighborhood. That
is, for all j ∈ [0, n − 1], δ(P, v1v2 . . . vj) = E(m, j) > k must hold. Checking
this condition requires just O(n) additional time beyond the O(mn) time spent
computing E.

Whenever k < m, the time complexity can be further improved by observing
that we need only consider the band of E of width k about the main diagonal.
This follows because all entries outside this band must be greater than k as
more than k insertions or deletions are required to edit the associated prefix
of P into that of v. The computation of E restricted to this band consumes
only O(mk) time. Furthermore, only O(k) space is required as each row can be
computed from the preceding row. See [12, 9] for more details. Recalling that
n ≤ m + k ∈ O(m), we obtain the following result:

Lemma 6. v ∈ CNk(P ) can be decided in O(m·min(k, m)) time and in O(min(k, m))
space.
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6 Computing Cluster Sizes

To this point an edit script s has been chosen uniformly from CC(P ) and we have
determined that v = s(P ) is in CNk(P ). It remains to compute the cluster size
g(v), i.e., the number of edit scripts in CC(P ) that generate v. As in Section 3, we
first consider how to construct the set of canonical edit scripts for P generating
v. Throughout this section, let r = k − E(m, n).

Definition 2. For each i ∈ [0, m], j ∈ [0, n], and l ∈ [E(i, j), E(i, j) + r] let

C(l, i, j) be the set of all canonical (p1p2 . . . pi, l) edit scripts generating v1v2 . . . vj .

Define

D(l, i, j) = {s ∈ C(l, i, j) | s ends with a deletion}
R(l, i, j) = {s ∈ C(l, i, j) | s = [ ] or s ends with a replacement}
I(l, i, j) = {s ∈ C(l, i, j) | s ends with an insertion}

For l < E(i, j), we define D(l, i, j) = R(l, i, j) = I(l, i, j) = ∅.

If we compare Definition 2 with Definition 1, we recognize an additional
argument j, accounting for the fact that we want the edit scripts generating a
fixed string v.

Lemma 7. For l ∈ [E(i, j), E(i, j) + r], the following recurrences hold:

D(l, i, j) = (D(l′, i − 1, j) ∪ R(l′, i − 1, j)) · [pi→ε] where l′ = l − δ(pi→ε)
R(l, i, j) = ((D(l′, i − 1, j − 1) if i > 1 and pi−1 6= pi) ∪

(I(l′, i − 1, j − 1) if j > 1 and vj−1 6= vj) ∪
R(l′, i − 1, j − 1)) · [pi→vj ] where l′ = l − δ(pi→vj)

I(l, i, j) = (I(l′, i, j − 1) ∪ R(l′, i, j − 1)) · [ε→vj ] where l′ = l − δ(ε→vj)

subject to the boundary conditions:

D(l, 0, j) = ∅
R(l, 0, j) = if l = 0 and j = 0 then {[ ]} else ∅
R(l, i, 0) = if l = 0 and i = 0 then {[ ]} else ∅
I(l, i, 0) = ∅

To compute the cluster size of v, one evaluates three (r + 1) × (m + 1) ×
(n + 1)-tables: ND(l, i, j) = |D(l, i, j)|, NR(l, i, j) = |R(l, i, j)|, and NI(l, i, j) =
|I(l, i, j)|, for i ∈ [0, m], j ∈ [0, n], and l ∈ [E(i, j), E(i, j) + r]. It immediately

follows that g(v) =
∑k

l=E(m,n) ND(l, m, n) + NR(l, m, n).
Recurrences for computing each entry in the three tables in constant time

can simply be derived from the recurrences of Lemma 7. Note that whenever
k < m, it suffices to evaluate the table entries in the band of width k around
the main diagonal, as described in Section 5. Thus O(r ·min(m, k) ·n) values are
to be computed. At any time, only O(r · min(m, k)) of these need to be stored.
Recall that n ≤ m + k ∈ O(m) and r < ∆. Hence we can conclude with:

Lemma 8. The cluster size g(v) can be computed in O(∆ ·min(m, k) ·m) time

and O(∆ · min(m, k)) space.

Note that for the unit cost function we have k < m and ∆ = 1, i.e., the
cluster size can be computed in O(km) time and O(k) space.
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7 Experimental Results

We implemented our estimator in C, and performed experiments to demonstrate
its accuracy, its convergence, and its speed. In the first three experiments we used
an alphabet of size four and the unit cost function. For this cost function our
implementation runs in O(tmk) time and O(mk) space. We achieved a consider-
able speedup in practice by using the failure function of the Knuth-Morris-Pratt
algorithm [7]: whenever a column in table E is computed such that the mini-
mal entry is k, the remaining columns need not be evaluated. Instead, using the
precomputed failure function, one can decide v ∈ CNk(P ) and compute g(v) in
O(k) additional time. For the details of this technique, see [10, page 352].

In the first experiment, we employed the neighborhood construction algo-
rithm of [10], to compute the “real” probability Pr = Pr [Ak(P, T )] for k = 2
and 10,000 random patterns of length m = 20. We applied our procedure to the
same threshold value and the same random patterns, and compared the resulting
estimation Prt

e with Pr after each trial t ∈ [1, 2000], by evaluating the deviation
a(t) = 100 · |Pr − Prt

e|/Pr. Figure 1 shows the probability that a(t) > d for
d = 10%, 20%, . . . , 50% and t ∈ [1, 2000]. It reveals that after 1,000 trials we can
expect our procedure to compute a very good estimation of the real probability.
The average of a(t) over all 10,000 random patterns was 6.99% after 1,000 trials,
the median was 8.97%, and the standard deviation was 4.93%.

In the second experiment, we chose a fixed random pattern of length m = 50
and k = 10. For r ∈ [8, 16] we evaluated c(2r) = 100 · | log2(Pr2r

e /Pr2r−1

e )|, where
Prt

e is the estimated probability after t trials. Figure 2 shows the probability that
c(2r) > d for d = 10%, 20%, . . . , 50% in 1,000 runs of our procedure. (In each
run, the random number generator used for selecting random edit scripts, was
started with a different seed.) One recognizes that the oscillation of the estimated
probability becomes smaller, the larger the number of trials. For instance, the
average of c(216) was 29.6% over all 1,000 runs, the median was 21.6%, and the
standard deviation was 28.0%. For C(215) the corresponding values were 35.7%,
26.8%, and 35.7%. To get an idea of the size of the set we sampled from, we
computed the estimation 1.23 · 1018 for |CNk(P )|, by dividing |CC(P )| by the
average cluster size obtained in the successful trials. These numbers show that
216 trials are not a large effort compared to the alternative of enumerating the
entire condensed k-neighborhood.

In the third experiment, we ran 10,000 trials with 100 random patterns of
length m ∈ {10, 20, . . . , 50} and error rates m/k ∈ {10%, 20%}. The average
running times (in seconds) on a DEC Alpha 2004/233 are shown in the following
table:

m 10 20 30 40 50

10% 0.2 0.6 1.2 1.9 2.8

20% 0.3 1.0 2.0 3.2 4.7

In the fourth and fifth experiment, we used the 20-character alphabet of
amino-acids and the PAM120 [3] scoring function σ with score −8 for insertions
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and deletions. We estimated the probability Prσ [Ak(P, T )] that a pattern string
P of length m approximately matches some prefix v of a random string T such
that the length-relative score σ(P, v)/|s| is greater or equal to k′, where k′ = 0.8
and |s| is the length of the shortest optimal edit script for P generating v. Recall
that PAM120-scores are to be maximized, i.e., σ(P, v) is the maximal score of
any edit script for P generating v. Since σ has negative replacement scores, we
transformed it into a cost function δ defined by δ(α→β) = −σ(α→β)+x where
x = maxa,b∈Σ σ(a→b) = 12. δ is an integer cost function satisfying (1) and (2).
Moreover, one can show that σ(P, v)/|s| ≥ k′ if and only if δ(P, v) ≤ (x−k′) · |s|.
δ assigns cost 20 to deletions and insertions. The maximal cost for replacements
is 20, and the average is 14.01. Hence, in an optimal edit script deletions and
insertions are rare, i.e., m is a good approximation for |s|. Therefore, we can
expect a good estimation for Prσ [Ak(P, T )] if we run our procedure with δ and
k = (x − k′) · m = 11.2 · m.

In the fourth experiment, we again evaluated c(2r) for r ∈ [8, 16]. This time
we chose a random pattern of length m = 20 and k = 11.2 · m = 224. The size
of the sampled set CNk(P ) was estimated to be 2.03 · 1022. Figure 3 shows the
probability that c(2r) > d for d = 10%, 20%, . . . , 50% in 1,000 runs of our proce-
dure. As in Figure 2, the oscillation of the estimated probability decreases, with
the number of trials becoming larger. After about 214 trials one can recognize
the convergence of the estimation value. For instance, the average of C(216) was
12.1% over all 1,000 runs, the median was 8.4%, and the standard deviation was
15.8%. For C(214) the corresponding values are 14.2%, 9.8%, and 15.5%.

In the fifth experiment, we ran 10,000 trials with 100 different random pat-
terns of length m ∈ {10, 20, . . . , 50} and k = 11.2 ·m. The average running times
(in seconds) on a DEC Alpha 2004/233 are shown in the following table:

m 10 20 30 40 50

2.7 6.7 12.2 18.7 26.8

We did not perform any experiments verifying the accuracy of our estimator
for the 20-character alphabet and σ. This is because for interesting values of m
and k the condensed k-neighborhood was too large to be enumerated completely.
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Fig. 1. Pr[a(t) > d] for 10,000 patterns (|Σ| = 4, m = 20, k = 2)
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Fig. 2. Pr[c(2r) > d] for a fixed pattern and 1,000 runs (|Σ| = 4, m = 50, k = 10)
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Fig. 3. Pr[c(2r) > d] for a fixed pattern and 1,000 runs (|Σ| = 20, m = 20, k = 224)
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