
Computation and Visualization of Degenerate

Repeats in Complete Genomes

Stefan Kurtz∗ Enno Ohlebusch∗ Chris Schleiermacher∗

Jens Stoye† Robert Giegerich∗

In Proc. of the International Conference on Intelligent Systems
for Molecular Biology (ISMB2000), AAAI-Press, pp. 228-238, August 2000

Abstract

The repetitive structure of genomic DNA holds many
secrets to be discovered. A systematic study of repeti-
tive DNA on a genomic or inter-genomic scale requires
extensive algorithmic support. The REPuter family of
programs described herein was designed to serve as a
fundamental tool in such studies. Efficient and com-
plete detection of various types of repeats is provided
together with an evaluation of significance, interactive
visualization, and simple interfacing to other analysis
programs.

Keywords: Genome, Degenerate Repeats, Effi-
cient Algorithms, Software Tool, Visualization

Introduction

One of the most striking features of DNA is the ex-
tent to which it consists of repeated substrings. This
is particularly true of eukaryotes. For example, most
of the human Y chromosome consists of repeated sub-
strings, and it is estimated that families of reiterated
sequences account for about one third of the human
genome (McConkey 1993). The presence of palindromic
repeats hints to the formation of hairpin structures that
may provide some structural or replicational mecha-
nism (Huang et al. 1998). Furthermore some repeats
have been shown to affect bacterial virulence by act-
ing as the molecular basis of a mechanism used to suc-
cessfully colonize and infect different human individuals
(van Belkum et al. 1997). These properties make re-
peats an interesting research topic, and indeed, there
is a vast literature on repetitive structures and their
hypothesized functional and evolutionary role.

∗Faculty of Technology, University of Bielefeld, P.O.
Box 10 01 31, 33501 Bielefeld, Germany, corresponding au-
thor: Stefan Kurtz, Email: kurtz@techfak.uni-bielefeld.de,
Phone: +49 521 106 2906, FAX: +49 521 106 6411

†German Cancer Research Center (DKFZ), Theoretical
Bioinformatics (H0300), Im Neuenheimer Feld 280, 69120
Heidelberg, Germany

Repeat Analysis on a Genomic Scale

A tool for the systematic study of the repetitive struc-
ture of complete genomes must satisfy the following cri-
teria:

Efficiency The size of the genomes to be studied
ranges up to 3-4 billion base pairs. To do a com-
plete analysis, algorithmic efficiency must be practi-
cally linear, both in terms of computer memory and
execution time.

Flexibility and Significance While exact repeats of-
ten give a first hint at the overall repetitive structure,
a biologically realistic model must recognize degen-
erate repeats, which allow a certain rate of error.
Flexibility also requires to recognize not just direct
repeats, but also palindromic repeats, and other se-
quence features closely related. In the presence of
errors, the significance of a particular pattern is not
easily judged, and a statistical assessment of signifi-
cance is mandatory.

Interactive Visualization Since a large amount of
data is generated, interactive visualization is re-
quired. Human investigators need to obtain an
overview on a whole genome or chromosome basis,
but also must be able to zoom in on the details of a
particular repetitive region.

Compositionality In the long run, we expect that re-
peat finding is only a basic step in explaining genome
structure. Further analysis will be built on top of the
repeat finding. Hence, the repeat finding program
must provide a simple interface to enable composi-
tion with such advanced analysis programs.

The REPuter program family described herein satis-
fies these requirements in the following way: REPfind
uses an efficient and compact implementation of suffix
trees in order to locate exact repeats in linear space
and time. It has been estimated in (Kurtz 1999) that
this time-critical task can be done in linear time for
sequences up to the size of the human genome. These
exact repeats are used as seeds from which significant
degenerate repeats are constructed allowing for mis-
matches, insertions, and deletions. Note that our pro-
gram is not heuristic: it guarantees to find all degener-
ate repeats as specified by the parameters. Output size

Figure 1: A view of the repeat structure of Homo sapiens, chromosome 22; see (Dunham et al. 1999). Current
gaps in the chromosome sequence are being ignored. Degenerate direct repeats down to a length of 308 bases are
shown. The most significant one is a repeat of length 2461. The fat shaded line near the left indicates a region rich
of moderate-length repeats (1000-2000 bases), which calls for closer inspection via a zoom function, see Figure 6.

can be controlled via parameters for minimum length
and maximum error. Output is sorted by significance
scores (E-values) calculated according to the distance
model used. REPfind produces voluminous output in a
fixed format.

REPvis visualizes the output from REPfind ; see Fig-
ures 1, 4, 5, and 6. A color-code indicates significance
scores, and a scroll bar controls the amount of data
displayed. A zooming function provides whole genome
views as well as detailed presentations of selected re-
gions.

REPselect allows to select interesting repeats from
the output of REPfind as specified by user-defined cri-
teria. It delivers a list of repeats of chosen length, de-
generacy or significance into further analysis routines.

REPuter is available at our Bioinformatics web
server under the following address: http://BiBiServ.
TechFak.Uni-Bielefeld.DE/reputer/.

Related Work

Apart from many articles on finding exact repeats in
a string, there exists a considerable number of pa-
pers that deal with the detection of degenerate repeats
(which are called approximate repeats in the stringol-
ogy literature). The methods generally divide into two
groups: exact methods (Fitch, Smith, & Breslow 1986;
Leung et al. 1991; Landau & Schmidt 1993; Ben-
son 1994; Kannan & Myers 1996; Schmidt 1998; Sagot
1998) which (like ours) first formally define a model
of a repeat, and then locate all regions in a given se-
quence which satisfy this definition, and heuristic meth-

ods (Benson & Waterman 1994; Agarwal & States 1994;
Rivals et al. 1997; Benson 1999; Babenko et al. 1999;
Vincens et al. 1998) which cannot guarantee to find all
repeats under some specific model. We do not discuss
the heuristic methods here.

The first paper that dealt with model-based recogni-
tion of degenerate repeats solved the problem of finding
the highest-scoring pair of (possibly overlapping) sub-
strings in a string (Fitch, Smith, & Breslow 1986) in
O(n2) time and space, where n is the length of input
string. (Kannan & Myers 1996; Benson 1994) restrict
to pairs of non-overlapping substrings. Both algorithms
run in O(n2 log2 n) time. The space usage in (Kannan
& Myers 1996) is O(n2 log n), which was improved in
(Benson 1994) to O(n2).

A related question is to find degenerate tandem re-
peats, i.e., repeats where the two copies immediately
follow each other in the string. (Landau & Schmidt
1993) study the problem of finding all tandem re-
peats whose Hamming distance is below a threshold
k and present an algorithm that solves this problem in
O(nk log(n/k)) time. Another algorithm in that paper
allows to find all tandem repeats whose edit distance
is below k in O(kn log k log(n/k)) time. The algorithm
by (Schmidt 1998) solves the more general problem of
finding all “locally optimal” (non-extendable) repeats
(both tandem and non-tandem) under a general align-
ment score in O(n2 log n) time and O(n2) space. The
algorithm is based on a general method to find all high-
est scoring paths in weighted grid graphs.

A different problem definition was used in (Water-

2

man, Arratia, & Galas 1984; Sagot et al. 1995; Sagot
1998). They locate repeats which occur a minimum
number q of times, where each occurrence has a maxi-
mum Hamming distance e to a repeat “model” (which
may itself never exactly occur in the sequence). While
the algorithms in (Waterman, Arratia, & Galas 1984;
Sagot et al. 1995) are formulated such that the repeat
must be common to several sequences, the algorithm by
(Sagot 1998) also allows to find a repeat that multiply
occurs in the same string. Sagot’s algorithm uses the
suffix tree for preprocessing the sequence and runs in
time exponential in the number of errors.

(Sagot & Myers 1998) present an algorithm for find-
ing tandem arrays (multiple occurrences of substrings
similar to a common model in a row). Their approach is
limited because the approximate pattern size (which is
limited to at most 40 bases) and a range for the number
of copies have to be specified in advance.

Another model for degenerate repeats is used by (Le-
ung et al. 1991), who do not apply one of the standard
distance measures normally used in biological sequence
comparison. They define a repeat by an exactly match-
ing “core block” of a certain length, which can be ex-
tended on both sides by short mismatching regions, so-
called “error blocks”, followed by matching “extension
blocks”. A repeat is reported if (in their terminology)
the “printing criteria” are fulfilled, which are a num-
ber of parameters to the program: a minimal length
for the core block, maximal lengths of the error blocks,
and a minimal total length of the matching blocks. The
model, while well defined, is only described in an op-
erational way, and it is difficult to compare the output
of their program to what the other approaches based
on standard distance measures would find. That is why
this approach has also been classified by other authors
as a heuristic method.

To avoid confusion, we would like to point out that
in the biological literature there is often a third kind
of repeat finding programs, like RepeatMasker (un-
published, http://ftp.genome.washington.edu/RM/
RepeatMasker.html). Here, a “repeat” is a substring
that is known to occur very often in a genome. Such
substrings tend to confuse sequence analysis programs,
and hence they are masked to avoid spurious results.
Such repeat masking programs use a dictionary of
known repeat sequences and perform an exact or ap-
proximate string matching of the given sequence against
all the dictionary entries. Additionally, some of the pro-
grams identify “low complexity regions”, which more
closely meet our notion of a repeat, but usually are lim-
ited to be very short or only find special patterns like
the same character occurring several times in a row.

In all this work either the methods are restricted to
small input or they do not implement the full model of
degenerate repeats. REPuter provides the first solution
to repeat analysis of complete genomes.

Basic Notions

Let S be a string of length |S| = n over an alphabet Σ.
S[i] denotes the ith character of S, for i ∈ [1, n]. S−1

denotes the reverse of S. For i ≤ j, S[i, j] denotes the
substring of S starting with the ith and ending with the
jth character of S. Substring S[i, j] is denoted by the
pair of positions (i, j). The length of the substring (i, j)
is `(i, j) = j − i + 1. To refer to the characters to the
left and right of every character in S without worrying
about the first and last character, we define S[0] and
S[n + 1] to be two distinct characters not occurring
anywhere else in S.

A pair of positions (i1, j1), i1 ≤ j1 contains a pair
(i2, j2), i2 ≤ j2, if and only if i1 ≤ i2 and j2 ≤ j1. A pair
(p1, p2) of substrings (i.e. a pair of pairs of positions)
contains a pair (p3, p4) of substrings if and only if p1

contains p3 and p2 contains p4.
A pair of substrings R = ((i1, j1), (i2, j2)) is an exact

repeat if and only if (i1, j1) 6= (i2, j2) and S[i1, j1] =
S[i2, j2]. The length of R is `(R) = j1 − i1 + 1 =
j2 − i2 + 1. An exact repeat is maximal if it is not
contained in any other exact repeat. Clearly, an exact
repeat R = ((i1, j1), (i2, j2)) is maximal if and only if
S[i1 − 1] 6= S[i2 − 1] and S[j1 + 1] 6= S[j2 + 1].

If S is a DNA-sequence, then we distinguish between
two kinds of biologically interesting repeats. The re-
peats defined above are called direct repeats or forward
repeats. A pair of substrings P = ((i1, j1), (i2, j2)) is
a palindromic repeat or reverse complemented repeat if
and only if S[i1, j1] = S[i2, j2], where w denotes the
reverse complement of a DNA-sequence w. P is max-
imal if the complement of base S[i1 − 1] is different
from S[j2 + 1] and the complement of base S[j1 + 1] is
different from S[i2 − 1].

The Hamming distance of two equal-length strings
S1 and S2, denoted by dH(S1, S2), is the number of
positions where S1 and S2 differ.

There are three kinds of edit operations: deletions,
insertions, and mismatches of single characters. The
edit distance or Levenshtein distance of S1 and S2, de-
noted by dE(S1, S2), is the minimum number of edit
operations needed to transform S1 into S2.

Models and Algorithms

It is well known (Gusfield 1997) that maximal exact
repeats can be computed in linear time using the suf-
fix tree of S. (Delcher et al. 1999) and (Kurtz 1999)
independently showed how to practically construct suf-
fix trees for genomic-size sequences. The space efficient
implementation techniques developed in (Kurtz 1999)
were the basis of the first REPuter program for find-
ing exact repeats (Kurtz & Schleiermacher 1999). This
subtask of our new algorithms is not discussed further.

We will present algorithms for finding degenerate re-
peats based on two different distance models: the Ham-
ming distance model and the edit distance model. In
the following, we assume that an error threshold k ≥ 0
and a length threshold l > 0 is given.

3

• • •

Figure 2: k = 3 mismatching characters (denoted by
bullets) distributed equally over a repeat of length 11,
yielding a minimal seed size of

⌊

11
4

⌋

= 2.

The Mismatches Repeat Problem

k-mismatch repeats are based on the notion of Ham-
ming distance.

Definition 1 A pair of equal-length substrings R =
((i1, j1), (i2, j2)) is a k-mismatch repeat if and only if
(i1, j1) 6= (i2, j2) and dH(S[i1, j1], S[i2, j2]) = k. The
length of R is `(R) = j1 − i1 + 1 = j2 − i2 + 1. A
k-mismatch repeat is maximal if it is not contained in
any other k-mismatch repeat.

As with exact repeats, a k-mismatch repeat R =
((i1, j1), (i2, j2)) is maximal if and only if S[i1 − 1] 6=
S[i2 − 1] and S[j1 + 1] 6= S[j2 + 1].

The Mismatches Repeat Problem is to enumerate all
maximal k-mismatch repeats of length at least l that
occur in S. Our algorithm MMR for solving this prob-
lem is based on the following lemma.

Lemma 1 Every maximal k-mismatch repeat R of
length l contains a maximal exact repeat of length

≥
⌊

l
k+1

⌋

, called a seed.

Proof: In order to prove the lemma, let R =
((i1, j1), (i2, j2)) be a k-mismatch repeat. The k mis-
matches divide S[i1, j1] and S[i2, j2] into maximal exact
repeats w0, w1, w2, . . . , wk. The exact repeats w0 and
wk occurring at the borders of the strings are maximal
because R is maximal; the others are obviously maxi-
mal. Now maxi∈[0,k] |wi| is minimal if the mismatching
character pairs are equally distributed over R, yielding
a pattern as shown in Figure 2. Obviously, for such
an equal distribution the length of the longest wi is

≥
⌈

l−k
k+1

⌉

=
⌊

l
k+1

⌋

.

Algorithm MMR Compute all seeds and test for each
seed whether it can be extended to a k-mismatch re-
peat. More precisely, for each seed ((i1, j1), (i2, j2)) ta-
bles Tleft and Tright of size k+1 are computed such that
for each q ∈ [0, k]:

Tright (q) = max{p | dH(S[j1 + 1, j1 + p],
S[j2 + 1, j2 + p]) = q}

Tleft(q) = max{p | dH(S[i1 − p, i1 − 1],
S[i2 − p, i2 − 1] = q}.

For each q ∈ [0, k], if j1−i1+1+Tleft(q)+Tright (k−q) ≥
l, then output the maximal k-mismatch repeat ((i1 −
Tleft(q), j1 + Tright (k − q)), (i2 − Tleft (q), j2 + Tright(k −
q))).

Using Lemma 1, it is easy to prove that Algorithm
MMR correctly solves the Mismatches Repeat Problem.

Table Tright can be computed in O(k) time by us-
ing a suffix tree that allows to determine the length
of the longest common prefix of two substrings of S
in constant time. Since we construct the suffix tree
of S anyway, this imposes virtually no overhead. Of
course, the same approach can be applied to Tleft . For
details on this technique see (Harel & Tarjan 1984;
Schieber & Vishkin 1988).

Algorithm MMR detects a maximal k-mismatch re-
peat more than once if it contains more than one seed.
This can be avoided by stopping the computation of
table Tleft as soon as another seed is detected. This
ensures that for a given seed the algorithm will output
only those maximal k-mismatch repeats in which this
particular seed is the leftmost.

The Differences Repeat Problem

We now extend our technique to allow for insertions
and deletions.

Definition 2 A pair R = ((i1, j1), (i2, j2)) of sub-
strings is a k-differences repeat if and only if (i1, j1) 6=
(i2, j2) and dE(S[i1, j1], S[i2, j2]) = k. The length of R
is `(R) = min{j1 − i1 + 1, j2 − i2 + 1}. A k-differences
repeat is maximal if it is not contained in any other
k-differences repeat.

If R = ((i1, j1), (i2, j2)) is a k-differences repeat then
S[i1 − 1] 6= S[i2 − 1] and S[j1 + 1] 6= S[j2 + 1] does not
imply that R is maximal. This is in stark contrast to
exact and k-mismatch repeats. Consider for instance
the sequence ACTTCGCTTCA, where l = 3 and
k = 1. Then ((3, 5), (7, 10)) is a 1-difference repeat and
S[2] = C 6= G = S[6] as well as S[6] = G 6= A = S[11].
However, ((3, 5), (7, 10)) is not maximal because it is
e.g. contained in the 1-difference repeat ((1, 5), (6, 10)).

The Differences Repeat Problem is to enumerate all
maximal k-differences repeats of length at least l.

It can be shown that Lemma 1 also holds for k-
differences repeats:

Lemma 2 Every maximal k-differences repeat R of
length l contains a maximal exact repeat of length

≥
⌊

l
k+1

⌋

, called a seed.

Our algorithm for enumerating all k-differences re-
peats also crucially depends on Lemma 2.

Definition 3 Let U and V be strings of length m and
n, respectively. For q ∈ [0, k] define:

1. lookrightE(U, V, q) is the set of all pairs (x, y) ∈
[1, m] × [1, n] which are maximal with respect to
dE(U [1, x], V [1, y]) ≤ q.

2. lookleftE(U, V, q) = lookrightE(U−1, V −1, q)

Here the pair (x, y) is called maximal with respect to
dE(U [1, x], V [1, y]) ≤ q if and only if:

• dE(U [1, x + 1], V [1, y]) > q if x < n,

• dE(U [1, x], V [1, y + 1]) > q if y < m, and

• dE(U [1, x + 1], V [1, y + 1]) > q if x < n and y < m.

4

i2 − yl

j1

i2
i1 − xl

j2

j2 + yr

j1 + xr

front(q)

front(k − q)

i1

Figure 3: Extension of a seed in Algorithm MDR. The
elements of Tleft(q) and Tright(k − q) are marked by
bullets.

Algorithm MDR Compute all seeds and try to ex-
tend these to k-differences repeats as shown in Figure
3. To be more precise, for every seed ((i1, j1), (i2, j2))
compute tables Tleft and Tright defined as follows:

Tright (q) = lookrightE(S[j1 + 1, n], S[j2 + 1, n], q)
Tleft(q) = lookleftE(S[1, i1 − 1], S[1, i2 − 1], q).

For each q ∈ [0, k], for each pair (xl, yl) ∈ Tleft (q), and
each (xr, yr) ∈ Tright(k − q): if j1 − i1 + 1 + xl + xr ≥ l
and j2 − i2 + 1 + yl + yr ≥ l, then output the maximal
k-differences repeat ((i1 −xl, j1 +xr), (i2 −yl, j2 +yr)).

Based on Lemma 2, one can show that Algorithm
MDR correctly solves the Differences Repeat Problem.

One could of course use a standard dynamic program-
ming algorithm (e.g. (Wagner & Fischer 1974)) to ex-
tend seeds in O(n2) time. However, there are faster
methods: using the algorithm of (Ukkonen 1985), it
is possible to compute tables Tleft and Tright in O(kn)
time by computing only front(k) of the DP-matrix. A
combination of this algorithm with the longest common
prefix technique yields an O(k2) time method to com-
pute tables Tleft and Tright .

By restricting to leftmost seeds, Algorithm MDR can
be improved in a similar way as Algorithm MMR.

A different approach to search for degenerate repeats
would be to initially search for inexact seeds and then
to extend these with less errors. However, this approach
suffers from the fact that there is no efficient algorithm
for finding all inexact seeds, even if the number of errors
is very small, see the section on related work.

Before we discuss the overall efficiency of the algo-
rithms, we have to look at the significance of repeats.

Significance of Repeats

In order to assess the significance of a repeat found by
our method, we compute its E-value, i.e., the number
of repeats of the same length or longer and with the
same number of errors or fewer, that one would expect
to find in a random DNA of the same length.

As a model of random DNA the Bernoulli model is
used, where a base α ∈ {A, C, G, T} has the same fixed
probability pα at each position of the sequence. We
will start, however, with an even simpler model, the
uniform Bernoulli model, where each base has the same
probability of occurrence: pα = p = 1/4 for all α.

We first show how to compute E-values for maxi-
mal exact repeats. We use the fact that the number of
maximal exact repeats of length ≥ l is the same as the
number of (only) left-maximal repeats of length exactly
l. Ignoring boundary effects, we get:

�
[# of maximal exact repeats of length ≥ l]

=
�

[# of left-maximal exact repeats of length l]

=
∑

1≤i1<i2≤n

Pr [S[i1, i1 + l − 1] = S[i2, i2 + l − 1],
Si1−1 6= Si2−1]

=
∑

1≤i1<i2≤n

pl(1 − p)

=
1

2
n(n − 1)pl(1 − p).

Considering effects at the sequence ends, one obtains
in a similar way the following result:

�
[# of maximal exact repeats of length ≥ l]

=
1

2
(n − l + 1)(n − l)pl(1 − p) + (n − l)pl+1.

Non-uniform Bernoulli Model. One can general-
ize this result for the non-uniform Bernoulli model by
replacing

p by p∗ =
∑

α∈Σ

p2
α.

This, however, is only an approximation to the ex-
act solution because the different probabilities for self-
overlapping repeats are ignored.

Hamming Distance. E-values for k-mismatch re-
peats can be computed in a similar way. First, assume
fixed values for l and k. The probability of two inde-
pendent sequences S1 and S2, both of length l, to have
a Hamming distance of exactly k under the uniform
Bernoulli model is

Pr [dH(S1, S2) = k] =

(

l

k

)

pl−k(1 − p)k.

To compute the expected number of maximal repeats of
length l or longer and with k or fewer mismatches, one
has to sum over all possible k′ ≤ k and over all lengths
l′ ≥ l. The latter is necessary, in contrast to the case
of exact repeats, because for k-mismatch repeats it is
no longer true that the number of maximal repeats of

5

length ≥ l equals the number of left-maximal repeats
of length l. Hence, we obtain:

�
[# of maximal ≤ k-mismatch repeats of length ≥ l]

=
k

∑

k′=0

n−1
∑

l′=l

∑

1≤i1<i2≤n

Pr [dH(S[i1, i1 + l′ − 1],
S[i2, i2 + l′ − 1]) = k′,

Si1−1 6= Si2−1, Si1+l′ 6= Si2+l′]

=
1

2
n(n − 1)

k
∑

k′=0

n−1
∑

l′=l

(

l′

k′

)

pl′−k′

(1 − p)k′+2.

Because the sums are largely dominated by the terms
for k′ = k and l′ = l, this can be approximated by

1

2
n(n − 1)

(

l

k

)

pl−k(1 − p)k+2.

Edit Distance. In the case of the edit distance there
does not exist an analytic solution for Pr [dE(S1, S2) =
k]. For this reason we use the procedure of (Kurtz
& Myers 1997) which estimates the probability of the
event Ak(P) that an arbitrary (not necessarily random)
string P matches the prefix of a random string with
edit distance k. This procedure is an unbiased estima-
tor which gives good results in a matter of a thousand
samples even for patterns of small probability. To ob-
tain an estimation Pr [dE(S1, S2) = k], we precomputed
a table E. Here E(l, k) is the average of the estimation
of the probability of the event Ak(P). The estimation
is delivered by running the above procedure with 1000
samples for 100 random patterns P , each of length l.
The variance of the 100 estimations obtained for each
l and k is very small and so we argue that E(l, k)
gives a good approximation for Pr [dE(S1, S2) = k]
where l = max{|S1|, |S2|}. Hence we estimate (ignoring
boundary effects)

�
[# of maximal k-differences repeats of length l]

=

n−1
∑

i=1

n
∑

j=i+1

E(l, k)

=
1

2
n(n − 1)E(l, k).

Asymptotic Efficiency. The overall time efficiency
of Algorithms MMR and MDR can be assessed as fol-
lows. The preprocessing phase of computing the suf-
fix tree and locating the seeds takes O(n) time. For
a given seed, the extension phase of Algorithm MMR
takes O(k) time as shown above, yielding an overall
time efficiency of O(n + zk) where z is the number of
seeds. The extension phase of Algorithm MDR takes
time O(k3) per seed: As argued above, Tright and Tleft

can be computed in O(k2) time. For each q ∈ [0, k]
the algorithm tests O(k2) combinations of the values
in Tleft(q) and Tright(k − q), yielding an upper bound
of O(k3) per seed. Hence the overall time efficiency of
algorithm MDR is O(n + zk3).

The number of seeds z can be estimated by
�

[z] =

O(n2 1
|Σ|s) where s =

⌊

l
k+1

⌋

is the length of the seed as

calculated above.

Implementation
We implemented Algorithm MMR and Algorithm MDR
in the REPuter search engine REPfind. To detect seeds
(i.e. exact repeats) we use the same program as in
(Kurtz & Schleiermacher 1999). In MDR seeds are
extended by the dynamic programming algorithm of
(Ukkonen 1985). For both MMR and MDR, we com-
pute the length of matches by pairwise character com-
parisons, which is very fast in practice.

Besides degenerate direct repeats, REPfind is capa-
ble to detect degenerate palindromic repeats. This is
achieved by applying Algorithms MMR and MDR to
the string S#S, where S is the reverse complement of
S and # is a unique separator symbol.

To efficiently determine the significance of degen-
erate repeats we use precomputed tables H and E,
where E are the estimations as specified above and
H(l, k) =

(

l

k

)

pl−k(1 − p)k+2 for any l and k. Note that
the precomputed values are independent of n. Multi-
plying them by 1

2n(n − 1) gives the E-value. Thus an
E-value is computed in constant time.

Since Algorithm MMR and MDR are not heuristic,
they find all maximal k-mismatch or k-differences re-
peats exceeding some given length l. However, usually
the user only wants to see the most interesting repeats.
For this reason, in the default mode, REPfind selects
repeats according to the following rules:

(1) To be selected, the right instance of a direct repeat
has to start at least k+1 positions to the right of the
left instance of the repeat.

(2) For each seed only the most significant repeat con-
taining that seed is selected. In this way, “clumps”
of repeats are represented by only one repeat.

(3) Among all repeats selected according to (1) and (2),
REPfind reports the b most significant repeats in or-
der of significance. The parameter b can be defined
by the user.

The output format of REPfind is either ASCII show-
ing each repeat on a single line or a portable binary
format. The latter is much more space-efficient and re-
quires no parsing. The program can optionally report
the two instances of a repeat in form of an alignment.

The program REPselect reads the binary format de-
livered by REPfind. It allows to select repeats accord-
ing to user defined selection criteria. These are to be
specified by the user in form of executable object code
that is linked dynamically. Program code for several
such selection functions is supplied to aid the user in
developing his/her own selection functions.

Performance Results

Table 1 shows the running time and space consumption
of REPfind when applied to several genomes or chro-

6

mosomes. The construction of the suffix tree is domi-
nating the running time. It requires more than 70% of
the running time. The computation of exact repeats is
only slightly faster than the computation of degenerate
repeats. This surprising behavior can be explained as
follows: To extend a seed, the only data that needs to
be processed are two pairs of substrings of the input se-
quence. This is only a very small amount of data which
is processed sequentially. As a consequence, the local-
ity behavior of the extension phase is very good, and
therefore it runs very fast. On the other hand, the lo-
cality behavior of the suffix tree is very poor, see (Kurtz
1999). That is, the suffix tree traversal leads to many
cache misses, and it thus dominates the running time
of the repeat searching phase.

The heuristic strategy determines the length parame-
ter l such that we always find degenerate repeats. How-
ever, the number of repeats found differs very much,
especially for the larger sequences. The number of ex-
act repeats is always much smaller than the number of
degenerate repeats. In most cases the number of mis-
match repeats is about the same as the number of differ-
ences repeats. The remarkable exception is Drosophila
melanogaster with 4200 mismatch repeats and 6731 dif-
ferences repeats.

The space requirement for computing the differences
repeats is on average about 13.7 bytes per input sym-
bol including the space for the sequence. This is very
similar to the space requirement for computing exact
repeats, see (Kurtz & Schleiermacher 1999).

Visualization

REPvis, the visualization component of the REPuter
program family, provides an easy to use interface for
examining repeat structures computed by REPfind ; see
Figures 1, 4, 5, and 6. The program is designed to be
used by the biologist, thus putting the data in the hands
of those who can best interpret it.

A typical mode of use is as follows: The visualization
comes up showing a single colored line, depicting either
the longest or the most significant repeat. The first
step is to obtain an impression of the overall number
and distribution of repeats. By shifting a slider, we
let further repeats rise on the screen, in the order of
decreasing length or significance, which is coded in a
ten-color scale (see Figure 4). Since black is used as
the color for the shortest/least significant repeats, we
may go down all the way: If we hit the noise level, the
more significant repeats still shine up in colors before a
black background of noise.

During the overview, we may catch interest in par-
ticular repeats or repeat-rich regions. A mouse click
brings up the inspection window; see Figure 6. Here we
can zoom in or out on a region by left or right clicking
the mouse. Selecting a position on the strand symbol
prints the information corresponding to this sequence
position in a browser box below. There, a single re-
peat can be selected to view the alignment of the two
instances of the repeat or to submit the corresponding

nucleotide sequence for further investigation of biologi-
cal significance to a FASTA or BLAST database search.
This is achieved by invoking Netscape Navigator with
the -remote argument, which allows to connect to and
initiate the load of the database query data into an
already-running Netscape process (Zawinski 1994).

Conclusion

The REPuter approach gives a complete account of de-
generate direct and palindromic repeats, including sig-
nificance scores, with an efficiency that allows the anal-
ysis of all genomes currently available. It allows in-
specting repeats on a macroscopic scale as well as on
the sequence level.

Aside from direct and palindromic repeats, REPuter
also detects linguistic palindromes and forward, but
complemented repeats. Although there is no bio-
logical mechanism known to produce such patterns,
low complexity regions are typically exhibited as self-
overlapping occurrences of the four kinds of repeats de-
tected by REPuter.

At the moment, visual inspection of repeats found by
REPuter will be the major mode of application. In the
long run, models will need to be developed that explain
the manifold aspects of repetitive genome structure. We
expect that REPuter will serve as a basic vehicle for
such research.

Acknowledgments. Eivind Coward, Sven Rah-
mann, and Rainer Spang helped on statistical issues
of this work. Dirk Evers showed us how to dynamically
load shared object code into REPselect. All their help
is very much appreciated.

References

Agarwal, P., and States, D. J. 1994. The Repeat Pat-
tern Toolkit (RPT): Analyzing the structure and evo-
lution of the C. elegans genome. In Proc. of the Sec-
ond International Conference on Intelligent Systems
for Molecular Biology, ISMB 94, 1–9. Menlo Park,
CA: AAAI Press.

Babenko, V. N.; Kosarev, P. S.; Vishnevsky, O. V.;
Levitsky, V. G.; Basin, V. V.; and Frolov, A. S. 1999.
Investigating extended regulatory regions of genomic
DNA sequences. Bioinformatics 15(7/8):644–653.

Benson, G., and Waterman, M. 1994. A method for
fast database search for all k-nucleotide repeats. Nucl.
Acids Res. 22:4828–4836.

Benson, G. 1994. A space efficient algorithm for
finding the best nonoverlapping alignment score. In
Crochemore, M., and Gusfield, D., eds., Proc. of
the 5th Annual Symposium on Combinatorial Pattern
Matching, CPM 94. Asilomar, California, June 1994,
volume 807 of LNCS, 1–14. Berlin: Springer Verlag.

Benson, G. 1999. Tandem repeats finder: A pro-
gram to analyze DNA sequences. Nucl. Acids Res.
27(2):573–580.

7

Genome
n l Tree Exact hdist ≤ 4 edist ≤ 4 Space

(MB) (sec) #reps (sec) #reps (sec) #reps (sec) (MB)

Rhizobium sp. NGR234 0.51 120 1.10 9 1.71 11 1.71 13 1.71 7.14
Mycoplasma genitalium 0.55 130 1.19 9 1.84 59 1.89 62 1.90 7.71
Ureaplasma urealyticum 0.72 150 1.64 43 2.42 63 2.47 67 2.53 9.97
Mycoplasma pneumoniae 0.78 130 1.86 74 2.79 409 2.84 449 2.90 10.82
Borrelia burgdorferi 0.87 140 2.10 9 3.22 28 3.23 28 3.27 12.07
Chlamydia trachomatis 0.99 130 2.53 3 3.80 6 3.83 6 3.85 13.82
Chlamydia muridarum 1.02 130 2.64 4 3.91 8 3.94 8 3.98 14.16
Rickettsia prowazekii 1.06 140 2.65 9 4.02 10 4.08 10 4.08 14.71
Treponema pallidum 1.09 130 2.85 33 4.20 48 4.25 51 4.28 15.07
Chlamydo. pneum. AR39 1.17 130 3.16 6 4.63 7 4.66 8 4.67 16.27
Chlamydia pneumoniae 1.17 130 3.13 8 4.62 11 4.65 13 4.70 16.28
Aquifex aeolicus 1.48 140 4.15 12 6.06 22 6.08 23 6.13 20.50
Campylobacter jejuni 1.57 160 4.29 25 6.33 39 6.37 39 6.38 21.71
Methanococcus jannaschii 1.59 150 4.36 23 6.45 48 6.48 62 6.48 22.00
Helicobacter pylori 1.59 150 4.45 45 6.47 84 6.54 100 6.54 22.04
Pyrococcus horikoshii 1.66 140 4.76 3 6.85 3 7.00 3 7.09 22.97
M. thermoautotrophicum 1.67 140 4.79 29 6.98 51 7.00 57 7.16 23.14
Pyrococcus abyssi 1.68 140 4.82 0 5.00 4 7.00 4 7.09 23.32
Haemophilus influenzae 1.75 140 4.99 24 7.34 79 7.34 85 7.42 24.19
Plasmodium falciparum 1.91 240 4.94 46 7.43 107 7.53 126 7.81 26.51
Archaeoglobus fulgidus 2.08 140 6.11 29 8.93 58 8.98 59 8.99 28.77
Deinococcus radiodurans 2.92 170 8.85 35 12.79 41 12.87 47 12.89 40.40
Synechocystis PCC6803 3.41 160 11.27 347 15.64 655 15.68 686 15.82 47.15
Bacillus subtilis 4.02 150 13.61 286 18.80 411 18.86 496 18.88 55.60
M. tuberculosis 4.21 170 13.79 118 19.32 189 19.40 190 19.50 58.19
Escherichia coli 4.42 150 15.18 209 20.66 473 20.89 507 20.98 61.19
Saccharomyces cerevisiae 11.50 180 43.19 3379 58.08 9093 58.49 9571 58.96 158.95
Homo sapiens Chr. 22 32.06 670 136.56 58 185.88 482 186.71 548 187.33 443.04
A. thaliana Chr. 2 and 4 35.47 590 169.06 151 226.43 665 227.30 797 227.64 490.23
Caenorhabditis elegans 92.40 1905 584.76 74 762.44 191 767.31 227 769.86 1277.27
Drosophila melanogaster 114.44 700 737.73 1330 1047.90 4200 1052.52 6731 1053.92 1582.80

Table 1: The running time, the space consumption, and the number of repeats found when applying REPfind to
several genomes and large chromosomes. The timings are in seconds. The program was run on a SUN-sparc computer
under Solaris 2.5.1 with a 400 MHz-Processor and 2 Gigabytes of main memory. The second column shows the length
of the genome in megabytes. The third column shows the length parameter l which was chosen according to the
following strategy: We count, for each possible d, the number b(d) of branching nodes exactly of depth d in the suffix
tree. We then determine the largest d such that b(d) ≥ 10.000 and set l = 5·d·log10(d). This heuristic strategy proved
to be good since it balances significance and speed. Column four of the table shows the construction time of the suffix
tree. The last column shows the overall space requirement (in megabytes) for computing degenerate repeats with
at most four differences. The remaining columns show the number of repeats found and the corresponding running
time for REPfind when computing exact repeats or degenerate repeats with hamming and edit distance at most 4.

8

Figure 4: A typical application of REPvis, showing a view of the 50 most significant direct repeats in E. coli (4.6Mb),
ranging from 1147 to 2950 bases in length. There are five repeats longer than the longest one found in M. tuberculosis ;
see Figure 5. In the main window graphics panel, two horizontal lines depict the input sequence and a copy of it.
Diagonal lines stand for repeats by connecting their respective starting positions. Below the graphics panel, a choice
box lists all calculated sequences in a user specified directory. Three further buttons switch the visualization mode
to square graph, circle graph or dot plot. An additional button leads to the complete list of all repeats and their size
distribution. Selector buttons specify which type of repeat to display. The symbols F , P , C, and R indicate direct
(forward), palindromic (reverse complemented), complemented and reversed repeats; the number of repeats for each
type is shown on the button.

Figure 5: A view of the 50 most significant direct repeats in M. tuberculosis (4.4Mb), comparable in size to E. coli.
Here the longest repeat has 1697 bases, and no others come close to this one. The mesh-like pattern, clearer than in
E. coli, arises from multifold copies of the same repeat, around 1370 bases in length. Such patterns typically arise
from insertion sequences, which is quickly confirmed: A database search indicates that this is an insertion sequence
also common in other mycobacteria.

9

Figure 6: Zooming in on a repeat rich region on Homo sapiens, chromosome 22, here at zoom factor 28. (See Figure 1
for an overall view of the repeats.) Repeats are displayed with exact positions and E-values. An E-value smaller than
1.0 · 10−300 is rounded to 0.00. The sequence information is available for database search via the FASTA/BLAST
button.

Delcher, A.; Kasif, S.; Fleischmann, R.; Peterson, J.;
White, O.; and Salzberg, S. 1999. Alignment of Whole
Genomes. Nucleic Acids Research 27:2369–2376.

Dunham, I.; Shimizu, N.; Roe, B. A.; and Chissoe, S.
1999. The DNA sequence of human chromosome 22.
Nature 402:489–495.

Fitch, W.; Smith, T.; and Breslow, J. 1986. Detecting
internally repeated sequences and inferring the history
of duplication. In Segrest, J. P., and Albers, J. J., eds.,
Plasma Proteins. Part A: Preparation, Structure, and
Molecular Biology, volume 128 of Methods in Enzy-
mology. San Diego, CA: Academic Press. chapter 45,
773–788.

Gusfield, D. 1997. Algorithms on Strings, Trees, and
Sequences. New York: Cambridge University Press.

Harel, D., and Tarjan, R. 1984. Fast Algorithms for
Finding Nearest Common Ancestors. SIAM J. Com-
puting 13:338–355.

Huang, C.; Lin, Y.; Yang, Y.; Huang, S.; and Chen,
C. 1998. The telomeres of streptomyces chromosomes
contain conserved palindromic sequences with poten-
tial to form complex secondary structures. J. Mol.
Biol. 28(5):905–16.

Kannan, S. K., and Myers, E. W. 1996. An algorithm
for locating nonoverlapping regions of maximum align-
ment score. SIAM J. Computing 25(3):648–662.

Kurtz, S., and Myers, G. 1997. Estimating the Proba-
bility of Approximate Matches. In Proc. of the 8th An-
nual Symposium on Combinatorial Pattern Matching,

Aarhus, Denmark, June/July 1997, 52–64. Lecture
Notes in Computer Science 1264, Springer Verlag.

Kurtz, S., and Schleiermacher, C. 1999. REPuter :
Fast Computation of Maximal Repeats in Complete
Genomes. Bioinformatics 15(5):426–427.

Kurtz, S. 1999. Reducing the Space Requirement
of Suffix Trees. Software—Practice and Experience
29(13):1149–1171.

Landau, G. M., and Schmidt, J. P. 1993. An algo-
rithm for approximate tandem repeats. In Apostolico,
A.; Crochemore, M.; Galil, Z.; and Manber, U., eds.,
Proc. of the 4th Annual Symposium on Combinato-
rial Pattern Matching, CPM 93. Padova, Italy, June
1993, volume 684 of LNCS, 120–133. Berlin: Springer
Verlag.

Leung, M.-Y.; Blaisdell, B. E.; Burge, C.; and Karlin,
S. 1991. An efficient algorithm for identifying matches
with errors in multiple long molecular sequences. J.
Mol. Biol. 221:1367–1378.

McConkey, M. 1993. Human Genetics: The Molecular
Revolution. Boston, MA: Jones and Bartlett.

Rivals, É.; Delgrange, O.; Delahaye, J.-P.; Dauchet,
M.; Delorme, M.-O.; Hènaut, A.; and Ollivier, E. 1997.
Detection of significant patterns by compression algo-
rithms: The case of approximate tandem repeats in
DNA sequences. CABIOS 13:131–136.

Sagot, M.-F., and Myers, E. W. 1998. Identify-
ing satellites and periodic repetitions in biological se-
quences. J. Comp. Biol. 5(3):539–553.

10

Sagot, M.-F.; Escalier, V.; Viari, A.; and Soldano, H.
1995. Searching for repeated words in a text allow-
ing for mismatches and gaps. In Baeza-Yates, R., and
Manber, U., eds., The Second South American Work-
shop on String Processing. Viñas de Mar, Chili, 1995.
Proceedings, 87–100.

Sagot, M.-F. 1998. Spelling approximate repeated or
common motifs using a suffix tree. In Proc. of the
Third Latin American Symposium on Theoretical In-
formatics, LATIN 98, volume 1380 of LNCS, 111–127.
Berlin: Springer Verlag.

Schieber, B., and Vishkin, U. 1988. On Finding Lowest
Common Ancestors. SIAM J. Computing 17(6):1253–
1263.

Schmidt, J. P. 1998. All highest scoring paths in
weighted grid graphs and their application to finding
all approximate repeats in strings. SIAM J. Comput-
ing 27(4):972–992.

Ukkonen, E. 1985. Algorithms for Approximate String
Matching. Information and Control 64:100–118.

van Belkum, A.; Scherer, S.; van Leeuwen, W.;
Willemse, D.; van Alphen, L.; and Verbrugh, H.
1997. Variable number of tandem repeats in clini-
cal strains of haemophilus influenzae. Infect. Immun.
65(12):5017–27.

Vincens, P.; Buffat, L.; André, C.; Chevrolat, J.-P.;
Boisvieux, J.-F.; and Hazout, S. 1998. A strategy
for finding regions of similarity in complete genome
sequences. Bioinformatics 14(8):715–725.

Wagner, R., and Fischer, M. 1974. The String
to String Correction Problem. Journal of the ACM
21(1):168–173.

Waterman, M. S.; Arratia, R.; and Galas, D. J. 1984.
Pattern recognition in several sequences: Consensus
and alignment. Bull. Math. Biol. 46(4):515–527.

Zawinski, J. 1994. Remote Control of UNIX
Netscape. http://home.netscape.com/newsref/
std/x-remote.html.

11

