
REPuter: fast computation of maximal repeats in
complete genomes

�(���$ �)&(, �$� ��& ' ���"� �&#����&

����$ '��� ��!)"(-(� �$ *�&' (-(� �"���"�� �%'(���� �� �� ��� �.��
�� � �"���"��

��&#�$+

������ �� 	������ ��� ����� ������� �� �������� ��� ����� ������ �� �������� ��� ����

Abstract
Summary: A software tool was implemented that computes
exact repeats and palindromes in entire genomes very efficiently.
Availability: Via the Bielefeld Bioinformatics Server
(http://bibiserv.techfak.uni-bielefeld.de/reputer/).
Contact: {kurtz,icschlei}@techfak.uni-bielefeld.de

Introduction

Computer scientists have developed methods to locate repeated
substrings of different kinds, dating back to the pioneering work
of Martinez (1983). Several software tools have been developed
to locate repeated substrings, for example Devereux et al.
(1984), Agarwal and States (1994) and Rivals et al. (1997).
However, to our knowledge all available software tools for re-
peat analysis have strict limits on the maximal length of the
input sequence they allow to process. For example, the repeat-
finder of the GCG-package (version 7.0) only allows input se-
quences of length up to 350 000 bases.

We have developed a software tool REPuter which allows
to determine all exact repetitive substrings contained in com-
plete genomes. Exact repeats are only a small fraction of all
repeats of biological interest. However, since exact repeats
usually form the core blocks of approximate repeats, REPuter
can also serve as a fast subroutine for programs that detect
these, see for example Leung et al. (1991). The running time
and space requirement of REPuter is linear in the length of the
genome and in the size of the output. The method we use is
thus asymtotically optimal. The main advantage over previous
programs is the reduced time and space complexity of our
tool, and the guaranteed linear worst case behavior. This al-
lows one to handle much longer input sequences. The current
version is able to process input sequences consisting of up to
67 million bases. For example, to compute all maximal repeats
of length at least 20 contained in the S. cerevisiae genome (12
147 818 bases) takes about 46 s on a Pentium 350 MHz-com-
puter, using 160 Mbyte of space.

REPuter consists of two programs, a search engine and a vis-
ualizing component. The search engine processes a DNA se-
quence given by the user in Fasta-format, and returns a repre-
sentation of all maximal repeats in a simple ASCII-format. The
visualizing component processes the output of the search engine

and produces an overview of the number, the length, and the
location of the repeated substrings. REPuter is available via the
WWW on the Bielefeld-Bioinformatics Server (see above). For
user convenience we have precomputed the maximal repeats for
some genomes. The search engine can be downloaded as an
executable binary for several platforms.

Methods

Consider some sequence s over the DNA alphabet. A repeat
is a substring in s which occurs at least twice. Suppose w is
a repeat of length l in s which occurs at the starting positions
i and j, i.e. si… si+l–1 = sj… sj+l–1 . Let i < j. Then we say that
(l,i,j) is a forward repeat of length l, F-repeat, for short. Note
that w is contained in a longer repeat if the bases to the left
or to the right of both occurrences of w are identical. To re-
duce redundancy, we restrict attention to maximal F-repeats:
(l,i,j) is maximal if (si–1 � sj–1) and (si+1 � sj+l) (whenever
these positions exist in s). Note that each F-repeat in s can
easily be deduced from a maximal F-repeat. Maximal palin-
dromes are defined in a similar way: (l,i,j), i ≤ j, is a palin-
dromic repeat, P-repeat, for short, if si… si+l–1 = sj… sj+l–1 ,
where w denotes the reverse complement of a DNA-
sequence w. (l,i,j) is maximal if the complement of base si–1
and sj–1 is different from sj+1 and si+1 , respectively,
whenever these positions exist in s.

Example 1

gtcaca contains one maximal F-repeat (2,2,4) (ca) and one
maximal P-repeat (2,0,3) (gt), of length ≥2.

For a given threshold l > 0, our search engine computes all
maximal repeats of length at least l, using a variation of an algo-
rithm described in Gusfield (1997). Two phases are necessary
to deliver all maximal F- and P-repeats for a sequence s:

In the first phase, the suffix tree for the sequence t = xsysz
is computed. x, y, and z are unique symbols not occurring in
s. They allow to conveniently handle boundary cases. The suf-
fix tree is a well known data structure in string processing
(McCreight, 1976). It can be computed in O(n) time and
space, where n is the length of t. The tool of Rivals et al. (1997)
is also based on suffix trees, but it computes non-overlapping
F-repeats, and the worst case running time is quadratic.

�%"� �
 $%�
 �

����' 	���	��

426 � Oxford University Press

BIOINFORMATICS APPLICATIONS NOTE

REPuter

427

Fig. 1. The suffix tree for t = xgtcacaytgtgacz Marked nodes
represent maximal repeats.

In the second phase, a depth first traversal of the suffix tree
locates all nodes in the tree representing maximal repeats and
delivers their lengths and starting positions. The traversal re-
quires O(n) time, and all maximal repeats are output in O(m)
time where m is their number.

The running time of our program is O(n + m) which is opti-
mal. Using the space reduction techniques of Kurtz (1998),
the program requires about 12.5n bytes for representing the
suffix tree of t. This is an improvement of 7n bytes over
previous implementation techniques, see for example
McCreight (1976). Let rmax be the maximal length of any
repeated substring in t. For any sequence w let p(w) be the
number of positions in t where w occurs, and let pmax be the
maximal p(w) over all words w of length at least l. The space
requirement for the traversal phase is 4 pmax + 45rmax bytes
which is independent of the size of the output.

Example 2

Figure 1 shows the suffix tree for the sequence t = xgtca-
caytgtgacz. The maximal F- and P-repeats of length at least
2 contained in the sequence gtcaca (see Example 1) can be
read from the two marked branching nodes. All other branch-
ing nodes either represent repeats which are too short (see
a,c,g and t), or they represent repeats which are equivalent to
one of the reported maximal repeats (tg/tg is equivalent to
(2,2,4) and ac/ac is equivalent to (2,0,2)).

Table 1 shows the running times and space requirements
for computing all maximal F- and P-repeats of length at least
20 for several genomes (SUN Enterprise, 166 MHz, 512
Mbyte RAM, and Pentium II, 350 MHz, 384 Mbyte RAM).

We have developed software to visualize the lengths of the
repeats and their location in the form of a repeat graph. The
repeat graph consists of two thick horizontal lines. The line on
the top represents the input sequence s. The line on the bottom
represents a copy of s or the reverse complement s, depending
on whether to visualize maximal F-repeats or maximal P-re-
peats. Each thin line connects a maximal repeat, which is
represented as two colored blocks on both horizontal lines.
Different colors stand for repeats of different lengths. Figure
2 shows the repeat graph for a sample sequence.

Fig. 2. REPuter graphical output: repeat graph for a sample
sequence.

Table 1. Results for F- and P-repeats of length ≥20. The time and space for
computing only the F-repeats is smaller by a factor of 1/2, since this task
requires to compute the suffix tree for t = xsz

Input, approx. F-repeats P-repeats
size (MB) Num. of SUN PII Mem. Num. of SUN PII Mem.

repeats (s) (s) (MB) repeats (s) (s) (MB)

M. gen, 0.6 1022 4 2 8 56 9 4 15

C. tra, 1.0 26 8 3 14 8 17 7 27

A. ful, 2.1 4197 18 7 29 3267 39 16 57

E.coli, 4.6 7799 40 17 61 6763 83 35 122

S. cer, 11.58 173 526 112 46 160 171 841 248 97 320

Acknowledgments

We would like to thank Christoph Sensen who suggested the
development of a tool for searching repeats. Philip Denno
gave hints to improve the output and Robert Giegerich sug-
gested the name for the tool. Stefan Kurtz was supported by
DFG grant Ku 1257/1-1 and Chris Schleiermacher by the
Boehringer Ingelheim Fonds.

References

Agarwal,P. and States,D. (1994) The repeat pattern toolkit (rpt):
Analyzing the structure and evolution of the c. elegans genome.
Proc. ISMB ‘94, pp. 1–9.

Devereux,J., Haeberli,P. and Smithies,O. (1984) A comprehensive set
of sequence analysis programs for the VAX. Nucleic Acids Res., 12,
387–395.

Gusfield,D. (1997) Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, New York.

Kurtz,S. (1998) Reducing the space requirement of suffix trees. Report
98–03, Technische Fakultät, Universität Bielefeld.

Leung,M., Blaisdell,B., Burge,C. and Karlin,S. (1991) An efficient
algorithm for identifying matches with errors in multiple long
molecular sequences. J. Mol. Biol., 221, 1367–1378.

Martinez,H. (1983) An efficient method for finding repeats in
molecular sequences. Nucleic Acids Res., 11, 4629–4634.

McCreight,E. (1976) A space-economical suffix tree construction
algorithm. JACM, 23, 262–272.

Rivals,É., Dauchet,M., Delahaye,J. and Delgrange,O. (1997) Fast
discerning repeats in DNA sequences with a compression algorithm.
Proceedings of the Workshop on Genome and Informatics, Tokyo.

