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We evaluate embedding potentials, obtained via various meth-

ods, used for polarizable embedding computations of excita-

tion energies of para-nitroaniline in water and organic solvents

as well as of the green fluorescent protein. We found that iso-

tropic polarizabilities derived from DFTD3 dispersion coeffi-

cients correlate well with those obtained via the LoProp

method. We show that these polarizabilities in conjunction

with appropriately derived point charges are in good agree-

ment with calculations employing static multipole moments

up to quadrupoles and anisotropic polarizabilities for both

computed systems. The (partial) use of these easily-accessible

parameters drastically reduces the computational effort to

obtain accurate embedding potentials especially for proteins.
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Introduction

Spectroscopic methods are widely used and of great impor-

tance in every part of experimental chemistry. The understand-

ing of the underlying photophysical processes and the

interpretation of spectra require insights from highly accurate

theoretical methods. However, most of the interesting systems

are not isolated molecules in vacuum, but such that have a

strong coupling to their respective environment, like molecules

in solution or chromophores in proteins. These systems contain

at the very least a thousand electrons,[1,2] which makes highly

accurate QM computations on the whole system impractical.

However, only a small part of the system is usually directly

involved in photophysical processes and thus an obvious

opportunity is to use a (high level) QM method only for this

part and a more approximate one for the environment. A highly

efficient but yet accurate possibility is to treat the environment

with classical molecular mechanics (MM). Of course, this can be

done in varying complexity.[3] Alternatively, a QM description of

small fragments making up the environment is also possible,

but computationally more demanding.[4–7]

It has been shown that a polarizable QM/MM model, which

allows for the mutual interaction between the QM and MM

region, is crucial for accurate excitation energies.[8–13] The

method used and discussed in this work is the polarizable

embedding method by Kongsted and coworkers.[2,14] It is an

explicit solvent model, for which the electrostatic potential

(ESP) of a fragment is characterized by static multipole

moments (up to hexadecapoles) centered at the atom posi-

tions and the responsiveness of the system to the QM poten-

tial and other MM sites by induceable dipoles through

isotropic or anisotropic polarizability. Unfortunately, a lot of

effort has to be put in obtaining accurate parameters.

A multitude of schemes for the derivation of point

charges[15–19] alone or point charges and higher multipole

moments[20–22] has been developed. Point-charge models,

which are fitted to the quantum-mechanically derived ESP, can

mimic the effects of higher multipole moments to some

extend when additional constraints are considered.[12,23] For

the more elaborate task of obtaining dipole–dipole polarizabil-

ities only a few schemes exist, which are discussed, for exam-

ple, in Ref. [22].

In a standard experimental setup, a multitude of molecules in

different configurations contribute to the experimentally meas-

ured excitation energies. According to the ergodic hypothesis,

energies have to be averaged over time for a single particle to

obtain a representative multitude of configurations to cover

these effects.[24] Beerepoot et al. found that sampling is not nec-

essary for computing the one-electron excited state properties

via TDDFT for the green fluorescent protein (GFP),[25] while sig-

nificant effects for solvated molecules were found.[26] Ideally,

geometry-specific PE parameters would be obtained for every

single configuration through quantum chemical calculations.

The whole environment is still too large for a single calculation

with a simpler QM method and has therefore to be fragmented.

While for a solvent environment the obvious choice for a frag-

ment are the solvent molecules, a reasonable choice has to be

made for more structured environments. For proteins this can be

done by the molecular fractionation with conjugate caps

method by Zhang.[27]

S€oderhjelm et al.[9] found that highly accurate embedding

potentials including static multipoles up to quadrupoles and
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anisotropic polarizabilities are only needed for the MM region

close to the QM part to obtain accurate excited state proper-

ties and suggested to use less accurate parameters for the

rest. In these cases one would prefer to use a set of precalcu-

lated parameters from a standard force field like AMBER[15] or

OPLS,[16] but polarizabilities, which are crucial for accurate

embedding potentials, are not as easily accessible so far. A

way of minimizing the computational effort is to drastically

reduce the systems degrees of freedom, for example, using

rigid solvent molecules in the molecular dynamic (MD) simula-

tion. This way, only a single computation of the solvent poten-

tial parameters has to be performed and those can then be

placed accordingly around the QM region. Obviously, this

approximation lacks any geometry-specific effects due to flexi-

bility, but gives yet accurate results in some cases.[28]

The aim of this work is to investigate, whether a high level

determination of atomic parameters for polarizable embedding

is necessary for accurate excitation energies and moreover,

how much of the system needs to be described that way at

most. Finding a set of easily accessible parameters for the

major part of the environment and thus minimizing the

amount of QM calculations to obtain the embedding potential,

would allow for routine computation of several protein- or sol-

vent configurations. Our ansatz is to use high-level parameters

for the inner MM region only and isotropic polarizabilities

obtained from D3 dispersion coefficients with standard force

field point charges for the outer MM region.

Para-nitroaniline (PNA) in four different solvents and the

chromophor in GFP in its neutral (protonated) and anionic

(deprototnated) form Ref. [29] have been chosen for this study,

since both are well investigated model systems for solvato-

chromism and enzymichromism, respectively.

Methods

Based on the suggestions of S€oderhjelm et al.,[9] we divide the

MM environment into an inner shell, which is described by static

multipoles up to quadrupoles and anisotropic polarizabilities

obtained by the LoProp method,[22] and an outer shell described

by point charges alone or in combination with isotropic dipole–

dipole polarizabilities aA of an atom A derived from DFT-D3[30]

dispersion coefficients CAA
6 according to the equation

aA5

ffiffiffiffiffiffiffiffi
CAA

6

q
(1)

as introduced for Grimme’s quantum-mechanically derived

force field.[31] The cutoff distance is gradually increased in size

to figure out, when convergence to the full LoProp treatment

with multipole moments up to quadrupoles and anisotropic

polarizabilities is reached.

Since the DFT-D3 dispersion coefficients are derived from

molecular polarizabilities,[30] it seems likely to use them to

obtain approximate polarizabilities. In DFT-D3 the dispersion-

coefficient CAA
6 of an atom A in the homoatomic pair AA is cal-

culated from the respective dynamic polarizabilities aAðimÞ at

an imaginary frequency m using the Casimir–Polder-formula[32]

CAA
6 5

ð1
0

aAðimÞaAðimÞdm : (2)

According to Tang,[33] the dynamic polarizabilities may be

approximated as

aAðimÞ � aA
0

11ð m
gAÞ

; (3)

where aA
0 is the static polarizability of atom A and gA is an

empirical constant. Plugging this approximation into eq. (2)

yields

CAA
6 5ðaA

0 Þ
2

ð1
0

1

11ð m
gA
Þ

 !2

dm (4)

The integral of eq. (4) has the finite value gA and thus the

static polarizability is proportional to the squareroot of the dis-

persion coefficient.

aA
0 5

ffiffiffiffiffiffiffiffi
CAA

6

gA

s
(5)

Thus the static polarizability of an atom A may be easily

approximated as the square root of the self-dispersion-

coefficient times a constant factor. The quality of this approxi-

mation as well as a value for the proportionality factor will be

evaluated later.

In a recent study,[10] the influence of the size of the protein

surrounding on the excitation energies of GFP was investi-

gated by gradually increasing its size for a single conformation

and comparing it to the respective full quantum mechanical

treatment. However, in this work we will work with the same

structure but use the whole protein throughout.

Recently and independently from us, Beerepoot and

coworkers took the same distance-dependent approach[19] for

the computation of molecular properties of PNA in different

solvents via TDDFT. In contrast to our work they use point

charges and isotropic polarizabilities, that are averaged over

1000 solvent configurations from a molecular dynamics simula-

tion. The individual point charges are fitted to the respective

ESPs, while the polarizabilities are obtained via the LoProp

method. The detailed procedure to obtain these parameters,

which are termed QP1, is described in their work.[19] The QP1

solvent parameters are also evaluated in this work.

In this work we denote the PE force fields with MXPY, where

X is the order of the highest multipole moment and Y indi-

cates that no (0), isotropic (1), or anisotropic (2) polarizabilities

were used.

Computational Details

PNA in solution

Optimized solvent structures and static multipoles up to quad-

rupoles as well as anisotropic dipole–dipole polarizabilities

obtained via the LoProp[22] method were taken from previous
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studies.[28,34] Charge Model 5[17] (CM5) point charges were

obtained on the B3LYP/aug-cc-pVTZ-level with the UltraFine-

Grid in Gaussian09.[35] Gasteiger[18] (Gas) point charges were

obtained with Open Babel V.2.3.1.[36,37] Isotropic dipole–dipole

polarizabilities were calculated from the D3 dispersion coeffi-

cients according to eq. (5) with gA 5 1. D3 dispersion coeffi-

cients were obtained with a local Python implementation for

the computation of dispersion corrections, which has been

developed in our group for a recent revision of the DFTD3[30]

approach.[38] QP1 point charges and isotropic dipole–dipole

polarizabilities were taken directly from Ref. [19]. All pure

M0P1 embedding potentials were setup using the WHIRPOOL

program[39] as described in Ref. [28].

The combination of embedding potentials was based on

the minimal distance between the QM and MM region. For

every atom in the QM region, the distance to every MM atom

was computed. A fragment was described by the M2P2 LoProp

potential, if any of its atoms was within the cutoff distance,

else with the given M0P1 potential. The merging of embed-

ding potentials was performed by a local Python implementa-

tion. For the electronic excitation computations, the PERI-CC2

model has been applied,[40] which is a slight modification of

the standard CC2 approach combined with the polarizable

embedding approach[14] to exploit the efficient implementa-

tion of RI-CC2 model.[41] All PERI-CC2 calculations have been

carried out using a local development version of TURBO-

MOLE[42] using the (aug-)cc-pVDZ[43,44] with the corresponding

auxiliary basis sets.[45] Diffuse functions were added only to

non-hydrogen atoms to reduce the computational cost. Polar-

izabilities and multipole moments at MM atoms closer than

2.5 a.u. to the QM region were transferred to the nearest

neighbor atom to avoid overpolarization. Polarizabilities and

multipole moments were therefore removed from the respec-

tive atoms and added component-wise to its nearest neighbor.

The results were averaged over 121 snapshots from an MD

simulation, also described in Ref. [28].

GFP

Protein structures were taken from a previous study.[10] Static

multipoles up to quadrupoles and anisotropic dipole–dipole

polarizabilities were obtained by the LoProp-method[22] as

described in Ref. [10]. The M0P1 potential used was a combi-

nation of Amber94[15] point charges and isotropic dipole–

dipole polarizabilities derived from D3 dispersion coefficients

as described above. Element-averaged isotropic polarizabilities

(AvgLoP) were calculated from the anisotropic LoProp

polarizabilities.

The def2-SVPD basis set[46] was used for all calculation on

GFP. All PE-DFT[2] calculations were performed with Dal-

ton2015[47,48] using the long-range corrected CAM-B3LYP func-

tional.[49–52] PERI-CC2[40] calculations have been carried out

with the RICC2 module of a local TURBOMOLE[42] version sub-

sequent to a PE-Hartree–Fock calculation with the DSCF mod-

ule.[53] Polarizabilities and multipole moments at MM atoms

closer than 1.4 Å (2.6456 a.u.) to the QM region were trans-

ferred to the nearest neighbor atom for all PE-calculations as

described above. A slightly different distance than for the PNA

calculations was used so that both are consistent with previ-

ous studies. The difference is very small though and not

expected to have any significant effect.

Results and Discussion

Isotropic polarizabilities

In the first part of this section, the relation between the D3

polarizabilities and the ones obtained via LoProp, which act as

a reference throughout this work, are checked. Therefore, we

plotted the respective isotropic polarizabilities of every solvent

atom against each other (Fig. 1) and of the protein surround-

ings taken from the neutral chromophore system of our GFP

model (Fig. 2). Additionally, a linear fit-line through the origin

Figure 1. Correlation-plot of isotropic polarizabilities obtained via LoProp

(y) or D3 dispersion coefficients (x) for various solvents. Polarizabilities in

a.u. Additionaly, R2 and slope b of the linear fit line are given. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]

Figure 2. Correlation-plot of isotropic polarizabilities obtained via LoProp

(y) and D3 dispersion coefficients (x) for the protein surrounding of the

neutral form of the cromophore in GFP containing 3990 atoms. Polarizabil-

ities in a.u. Additionaly, R2, the slope b of the linear fit line, and the atom

type with the coordination number (CN) are given. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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is added, with the goal of obtaining a simple linear scaling

factor.

The polarizabilities from D3 and LoProp correlate well for

the solvents (Pearson’s r 5 0.977). Atoms of the same element

with the same coordination number (CN) can be found on a

parallel line to the x-axis, since they are assigned very similar

dispersion coefficients and thus the same D3 polarizability.

Because of that, they cannot cover effects from different

chemical environments with the same CN. This can be seen on

the basis of the sp3–carbon in dichloromethane (DCM; single

outlier) which is assigned the same value as the sp3–carbons

in the alcohols for D3, whereas LoProp finds a 50% higher

value (see Fig. 1).

The range of LoProp polarizabilities is even higher in the

protein, due to the multitude of different chemical environ-

ments. Data points between the linear carbon data cluster are

mostly carbon atoms with noninteger CNs, for which the dis-

persion coefficients are interpolated between the parametrized

integer values.

As an example, the 296 sp3–nitrogen atoms in the GFP MM

region have polarizabilities in the range of � 4.3 – 8.4 a.u.

(Fig. 2). However, the majority of data points nevertheless yield

a still good correlation coefficient (Pearson’s r 5 0.971). The sin-

gle outlier in the mid of Figure 2 is a carbon atom with a CN

of �2, which is an artifact from the crystal structure at the

outside of the protein.

Both correlations resulted in very similar slopes of the best-

fit line and sufficient R2 values for the fitted linear functions

can be found (solvents: R2 5 0.950, GFP: R2 5 0.681) Even

though according to eq. (5) each atom should have an individ-

ual scaling factor kA5
ffiffiffiffi
1
gA

q
, we choose an average atom-

independent global scaling factor of k5 5
3

for simplicity. The

scaled D3 polarizabilities are denoted scD3 hereinafter. From

our experience, excitation energies in PE computations are not

very sensitive to the quality of polarizabilities, so we are only

looking for a rough estimate.

LoProp polarizabilities used in this study have been

obtained with different basis sets—an ANO-type recontraction

of the aug-cc-pVTZ basis set for the solvents,[28,34] and an

ANO-type recontraction of the 6-31 1 G*[54–56] basis set for the

protein.[10] The basis set dependence of the polarizabilities is

thus negligible for our scaling parameter within the aspired

precision.

Calculation of excitation energies

The purpose of embedding parameters is to obtain accurate

molecular properties in PE-calculations, which will be eval-

uated in the following section. In the first part of this section,

M0P1 embedding potentials from different sources are com-

pared among each other by means of their convergence

behavior to the full M2P2 embedding potential for the excita-

tion energies of PNA in four different solvents. In the second

part, the same is done in a finer fashion for the neutral and

anionic state of the chromophore in GFP.

We use M0P1 embedding potentials with parameters from

different sources, namely LoProp (LoP), charge model 5 (CM5),

Gasteiger point charges (Gas), geometry-averaged parameters

from Beerepoot et al. (QP1) and polarizabilities from D3 disper-

sion coefficients: scaled (scD3) as well as unscaled ones (D3).

We use the notation A/B, where A indicates the source of the

point charges and B the source of the polarizabilities. For

example, CM5/LoP means, that CM5 point charges and LoProp

polarizabilities are employed. M2P2 parameters are always

LoP/LoP.

Solutions

Excitation energies of the bright p2p�-state of PNA in water,

methanol, ethanol, and DCM are shown in Table 1 for different

embedding potentials as well as mixed M2P2/M0P1 potentials.

The brightest of the three lowest excitations was chosen for

every configuration.

As discussed in detail previously,[28] full M2P2 results are in

good agreement with the experimental values for water and

are sufficient for methanol with a deviation of 0.1 eV. A devia-

tion of 0.15 eV can be found for ethanol. The higher deviation

of the alcohols may be caused by the rigid solvent model, but

this has to be investigated in a further study. At least, it has

been shown that partial atomic charges in alcohols varied

strongly with the configuration.[19] The highest deviation of

more than 0.2 eV can be found for dichlormethane.

Table 1. Excitation energies of the brightest PNA excitation in different

solvents.

Cutoff

LoP/

LoP

QP1/

QP1

QP1/

scD3

CM5/

QP1

CM5/

scD3

CM5/

D3

Gas/

scD3

Water

0 3.45 3.41 3.39 3.45 3.42 3.58 3.66

2.5 3.36 3.35 3.34 3.36 3.35 3.43 3.45

3.5 3.34 3.33 3.33 3.34 3.33 3.38 3.41

5.0 3.32 3.31 3.31 3.32 3.31 3.34 3.36

Full M2P2 3.30

! exp 3.29

MeOH

0 3.52 3.49 3.42 3.58 3.52 3.67 3.65

2.5 3.48 3.47 3.44 3.50 3.47 3.56 3.52

3.5 3.48 3.47 3.45 3.49 3.48 3.52 3.51

5.0 3.47 3.47 3.46 3.48 3.47 3.49 3.49

Full M2P2 3.47

! exp 3.37

EtOH

0 3.56 3.52 3.47 3.59 3.54 3.70 3.67

2.5 3.52 3.50 3.48 3.53 3.51 3.59 3.54

3.5 3.52 3.49 3.50 3.52 3.51 3.54 3.53

5.0 3.51 3.51 3.51 3.52 3.51 3.53 3.52

Full M2P2 3.51

! exp 3.36

DCM

0 3.82 3.81 3.81 3.82 3.82 3.82 3.86

2.5 3.82 3.81 3.81 3.82 3.82 3.82 3.85

3.5 3.81 3.80 3.8 3.81 3.81 3.81 3.81

5.0 3.81 3.81 3.8 3.81 3.81 3.81 3.81

Full M2P2 3.81

! exp 3.58

Solvent molecules within the cutoff radius are described by a M2P2

potential obtained via LoProp, the rest of the solvent shell up to 12 Å

by various M0P1 potentials. Energies were averaged over 121 snap-

shots. Cutoff in Å, all other values in eV.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2016, 37, 2052–2059 2055

http://onlinelibrary.wiley.com/


However, the focus of this study is not on the excitation

energies themselves, but on the performance of the different

embedding potentials in comparison to the full M2P2 poten-

tial and their convergence behavior when the higher potential

is used in the inner MM region. Considering the pure poten-

tials, QP1/QP1, CM5/scD3, and LoP/LoP all perform well. Excita-

tion energies are already in good agreement with full M2P2

(deviations< 0.05 eV) with the exception of water, for which

deviations of 0.10–0.15 eV are found. A ranking of the three

potentials would be in the order as listed but the differences

are not significant and the amount of data is too small for any

definite conclusion.

CM5/D3 and Gas/scD3 show larger deviations of up to 0.36

eV (Gas/scD3 for water). Although Gasteiger charges have the

advantage that they can be generated from structural data

directly, the deviations are not acceptable. DCM is an excep-

tion and almost similar results are obtained with all potentials.

As mentioned, the DCM results are not in good agreement

with experiment but their insensitivity to the applied potential

might give a hint that there is already some problem with the

underlying solute/solvent configurations. Computing reliable

structures might now be the most challenging part in theoreti-

cal studies on solvatochromism.[28]

One interesting finding can be derived from the QP1/scD3

and CM5/QP1 results. It seems that the agreement of QP1/QP1

and CM5/scD3 is caused by a compensation of opposing

effects. When exchanging either QP1 point charges or polariz-

abilities with their respective counterpart from the CM5/scD3

potential, excitation energies are always lower for QP1/scD3

than for both original potentials and always higher for CM5/

QP1. The shift is more pronounced for the point charges but

overall, the combined potentials still yield acceptable results.

The actual reason for this behavior of the combined potentials

has not been found. It might be that the averaged QP1 point

charges and the averaged QP1 polarizabilities have some depend-

ency. But as they are only derived from the same geometries but

not fitted at the same time and also with different approaches, it is

not obvious where the dependency is coming from.

Turning now to the convergence behavior, it can be found

that the full M2P2 result is almost reached for the well per-

forming M0P1 potentials when the parameters of solvent mol-

ecules within only 2.5 Å of the QM region are replaced. Only

for water, the convergence is a little bit slower and a cutoff

radius of 5.0 Å is required for the same accuracy. As expected,

the less reliable CM5/D3 and Gas/scD3 variants converge

much slower. But even for these cases, full M2P2 can almost

be recovered by a cutoff radius of 5.0 Å. Because the solute/

solvent configurations are obtained with a 12-Å-cutoff radius

for the inclusion of solvent molecules, the inner MM region

accounts only for about 25–30% with the 5-Å-cutoff radius.

GFP

Encouraged from the results of the previous section, we now

turn to a related problem: the environmental effects of the

protein surroundings on the spectral properties of the GFP

chromophore. In the PE setup, it is even more beneficial to

have an efficient way to obtain the MM parameters for a pro-

tein embedding potential because their determination is nor-

mally computationally much more demanding than for an

isolated solvent molecule. Here, GFP serves as a test case for

the pragmatic way of deriving isotropic polarizabilities from

D3 coefficients. As additional test, PE-CAM-B3LYP results are

also computed.

Amber94 point charges are chosen to model the electro-

static part of the embedding potential. This choice avoids

additional QM computations to derive appropriate parameters,

the force field parameters are well tested, and in a previous

study, they have yielded very similar results to a M2P0 poten-

tial.[10] The point charges are combined with scD3 polarizabil-

ities, unscaled D3 polarizabilities, and element-wise-averaged

isotropic polarizabilities from LoProp (AvgLoP). The latter

approach has been applied previously in the context of pro-

tein–ligand binding.[57] Based on increasing values for the cut-

off radius, the more approximate potential parameters are

Figure 3. PERI-CC2 excitation energies of the p2p�-state in neutral and ani-

onic chromophore in GFP in dependence of the cutoff distance for differ-

ent embedding potentials. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 4. PE-TDDFT (CAM-B3LYP) excitation energies of the p2p�-state in

the neutral and anionic chromophore in GFP in dependence of the cutoff

distance for different embedding potentials. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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replaced by their M2P2 counterparts. To check whether

induced dipoles are necessary in the outer MM region, point

charge only results (NoPol) are also computed. All data points

are plotted in Figure 3 for PERI-CC2 and Figure 4 for PE-CAM-

B3LYP.

It is instantly noticeable that the neutral and anionic form

as well as PERI-CC2 and PE-CAM-B3LYP show qualitatively very

similar results among each other. The excitation energies

obtained with pure M0P1 potentials already show good results

with respect to the full M2P2 potential whereby the deviations

for scD3 and AvgLoP are less than 0.05 eV for all four cases,

and less than 0.10 eV for D3 polarizabilities. When increasing

the size of the M2P2 region, the excitation energies are hardly

affected although the convergence is not smooth so that devi-

ations for combined potentials might be larger than for the

pure M0P1 potential. This might be an artifact of how the pro-

tein fragments with different potentials are mixed. For exam-

ple, the NoPol plot for the neutral GFP system treated with

PERI-CC2 shows such an outlier for the cutoff distance RCO 5 2

Å. It cannot be deduced if such artifacts do not appear for

larger cutoff distances or if they just do not influence the exci-

tation energies. In any case, the maximum deviation for the

two more reliable M0P1 potentials never exceeds a deviation

of 0.04 eV to the full M2P2 results.

The question, if the distinction of different atom types

based on the CNs for the computation of the scD3 polarizabil-

ities is benefical and causes the difference to the AvgLoP

results, cannot be answered from the data. The deviation with

respect to M2P2 is lower for small cutoff radii RCO� 3 Å, espe-

cially for RCO 5 0 Å, but this might as well be coincidental.

When only point charges are used for the whole protein,

deviations go up to about 0.15 eV. Roughly a quarter of the

whole protein (RCO � 6 Å) needs to be described by the M2P2

potential to give similar results to combined M2P2/M0P1

potentials, while about a half (RCO � 10 Å) is needed for

convergence.

It should be noted that all potentials show an almost con-

stant relative shift between the neutral and anionic form. For

scD3 results, this has been exemplarily compiled in Table 2.

The shift for PE-CAM-B3LYP (�20.40 eV) is close to the experi-

mental range of 20.42 (at 1.6 K) to 20.53 eV (at 295 K),[58]

while PERI-CC2 (�20.65 eV) overestimates the shift. For abso-

lute excitation energies, the converged PERI-CC2 values are

within the aspired 0.1 eV error margin to the experiment for

the excitation energy in the anionic form but overestimates

the excitation energy of the neutral form by 0.2 eV, while PE-

CAM-B3LYP strongly overestimates both by 0.3–0.4 eV.

Using the pure Amber94/scD3 practically nullifies the compu-

tational effort to obtain the embedding potential for GFP. It is

hard to say though, if these findings are easily transferable to

other proteins (or even completely different environments) and

not just a coincidence. More experience for this is required.

However, the excitation energies get relatively stable for a cutoff

distance of RCO� 3 Å for all embedding models. Thus static mul-

tipoles up to quadrupoles and isotropic polarizabilities should

be employed for this region to obtain reliable results. This cutoff

distance corresponds to 12% of the whole GFP environment,

which still immensely reduces the computational effort to

obtain embedding potentials to the same fraction.

Conclusions

We found that isotropic polarizabilities obtained from D3 dis-

persion coefficients correlate well with those obtained via the

LoProp method. Using these polarizabilities in combination

with appropriately derived point charges for the calculation of

PNA excitation energies in different solvents gave comparable

energies to those obtained via the LoProp method. While the

best pure M0P1 potentials already give reasonable results,

Table 2. PERI-CC2 (ECC
exc) and PE-CAM-B3LYP (EDFT

exc ) excitation energies of the p2p�-excitation in GFP obtained with a mixed M2P2(LoP)/M0P1(Amber94/

scD3)-embedding potential in dependance of the cutoff distance.

Neutral Anionic Shift

Cutoff % EDFT
exc ECC

exc % EDFT
exc ECC

exc DEDFT
exc DECC

exc

0.0 0.0 3.40 3.32 0.0 3.02 2.69 20.39 20.63

1.5 1.8 3.41 3.33 1.8 3.01 2.69 20.39 20.64

2.0 4.8 3.39 3.31 5.9 3.00 2.67 20.40 20.64

2.5 8.3 3.38 3.29 8.3 2.99 2.65 20.39 20.63

3.0 11.6 3.41 3.32 11.6 2.99 2.65 20.42 20.67

4.0 16.1 3.40 3.32 15.9 2.99 2.65 20.41 20.67

6.0 27.1 3.40 3.31 27.1 2.99 2.64 20.41 20.66

8.0 40.3 3.40 3.31 40.3 2.99 2.65 20.41 20.66

10.0 54.5 3.41 3.32 54.4 3.00 2.67 20.41 20.66

12.0 65.8 3.41 3.33 65.7 3.01 2.68 20.40 20.65

14.0 74.5 3.41 3.33 74.8 3.01 2.67 20.40 20.65

16.0 87.4 3.41 3.33 87.4 3.01 2.68 20.40 20.65

18.0 94.2 3.41 3.33 94.3 3.01 2.68 20.40 20.65

20.0 97.4 3.41 3.33 97.3 3.01 2.68 20.40 20.65

1 100.0 3.41 3.33 100.0 3.01 2.68 20.40 20.65

! exp. 3.05/3.12 2.63/2.59 20.42/20.53

The respective percentage of MM atoms described by the M2P2 potential and relative shift (DEexc) between excitation energies in both GFP systems is

also shown. Experimental values (at 1.6 K and 295 K) are taken from Ref. [58]. Energies are given in eV, distances in Å.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2016, 37, 2052–2059 2057

http://onlinelibrary.wiley.com/


M2P2 parameters for the innermost solvent shell (�5 Å) are

needed for very high accuracy though.

Using the scaled D3 polarizabilities in combination with

standard force field point charges from Amber94 for the calcu-

lation of GFP’s excitation energies, yields excellent results. The

use of a pure M0P1 embedding potential already reproduces

the energies obtained with a full M2P2 potential. One should,

however, take care when transferring these results to other

proteins. For the innermost shell (�3 Å) a geometry-specific

M2P2 embedding potential can be recommended as a save

estimate for already obtaining results close to a full M2P2

treatment.

Similar results can also be found for average element-wise

LoProp parameters. In previous studies concerning polarizable

force fields for protein–ligand interactions, a higher sensitivity

to the quality of the polarizabilities has been found[57] but this

problem also requires a higher accuracy than the envisaged

error of 0.1 eV of this study. Of course, more refined parame-

ters can be (and have been) assigned based on a better dis-

crimination of different atom types. Such a force field-like

approach looses the generality of the present alternative

which can be applied with a minimum of curation by the user.

The procedure introduced here is principally transferable to

all environments—proteins, solutions, or even other cases like

surfaces or polymers— provided that appropriate point

charges are accessible. D3 polarizabilities can be easily

obtained from the respective structures. Using the scaled D3

polarizabilities with appropriate point charges for the major

part of the environment significantly reduces the computa-

tional effort to obtain embedding potentials, while almost

keeping the accuracy of the full M2P2 LoProp embedding

potential for PE-calculations.

Employing these parameters makes the computation of mul-

tiple protein- and solvent configurations feasible.
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