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Abstract

NMR offers the possibility of accurate secondary structure for proteins that would be too large for structure determi-
nation. In the absence of an X-ray crystal structure, this information should be useful as an adjunct to protein fold
recognition methods based on low resolution force fields. The value of this information has been tested by adding
varying amounts of artificial secondary structure data and threading a sequence through a library of candidate folds.
Using a literature test set, the threading method alone has only a one-third chance of producing a correct answer among
the top ten guesses. With realistic secondary structure information, one can expect a 60–80% chance of finding a
homologous structure. The method has then been applied to examples with published estimates of secondary structure.
This implementation is completely independent of sequence homology, and sequences are optimally aligned to candidate
structures with gaps and insertions allowed. Unlike work using predicted secondary structure, we test the effect of
differing amounts of relatively reliable data.
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There is no shortage of methods for predicting a protein’s structure
based only on its sequence~Böhm, 1996; Westhead & Thornton,
1998!. Unfortunately, unless the sequence has significant sequence
homology to something of known structure, one could not regard
any of the methods as reliable~Lesk, 1997; Levitt, 1997; Marchler-
Bauer et al., 1997!. At the same time, they may be the only means
of predicting structure in the absence of experimental data. A dif-
ferent problem arises for a protein sequence when a limited amount
of experimental information is available. A typical case might
come from a protein that yields a barely useful NMR spectrum. In
this situation, one would like to use the available data, even if it is
not suitable for conventional high resolution structure calculations.
This has led to a series of approaches that have their roots in
structure prediction, but attempt to incorporate very sparse exper-
imental data such as a few intramolecular distance estimates~Smith-
Brown et al., 1993; Aszódi et al., 1995; Lund et al., 1996; Skolnick
et al., 1997!. Typically, these methods produce low resolution struc-
tures and operate with the caveat that answers may sometimes be
quite wrong.

Taking this theme further, NMR data may provide still more low
resolution data. Even if a protein’s structure will never be solved,
its proton and heteronuclear NMR assignments may be largely
determined. The relationship between chemical shift and structure
has long been recognized~Pardi et al., 1983; Spera & Bax, 1991!,
but it can be better quantified. Given a fairly complete set of proton
and heteronuclear chemical shifts, one can expect secondary struc-
ture assignments to be more than 92% accurate~Wishart et al.,
1991, 1992; Wishart & Sykes, 1994a, 1994b!. The aim of this work
is to quantify the benefit this secondary structure information alone
will have on a typical, unreliable, protein fold recognition method.
This could be viewed as a way to improve the performance of a
poor prediction method or it could be seen as exploiting experi-
mental data that would not normally be sufficient to determine a
structure. In either case, there are two reasons for this to be useful.
First, there is a huge repository of protein chemical shift informa-
tion ~Seavey et al., 1991!. Secondly, protein chemical shifts can be
assigned in large proteins~more than 150 or 200 residues!, even
when relaxation effects would prevent acquiring reliable distance
information.

In this work, secondary structure information was added to an
existing protein sequence threading program~Huber & Torda, 1998!.
Threading means a protein sequence of interest is threaded through
a library of known protein folds generating many trial structures
~Jones et al., 1992; Sippl & Weitckus, 1992!. These can be ranked
by energy or score, and the most favorable ones taken as guesses
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for the native structure. In practice, the method is complicated by
having to allow for gaps and insertions to get the best sequence to
structure alignment. Clearly, this methodology will fail when one
encounters a new protein fold. One can also see that the potential
accuracy is limited compared to ab initio methods. The best one
can achieve with threading is limited by the most similar homo-
logue in one’s structure library. In practice, an alignment will
rarely be perfect, and the modeled coordinates will be even worse.
With these weaknesses, one should remember the reason for op-
timism is that new protein folds are found relatively infrequently
~Holm & Sander, 1994a!.

The sequence to structure alignment is calculated using a dy-
namic programming algorithm adapted from sequence to sequence
alignment~Needleman & Wunsch, 1970!. The score functions~force
fields!, however, are quite different to those that travel under the
umbrella of knowledge-based force fields and that are commonly
used for structure prediction~Sippl, 1995; Jernigan & Bahar, 1996;
Jones & Thornton, 1996; Sippl & Flöckner, 1996; Torda, 1997!.
The score functions used here have no reliance on Boltzmann
statistics and yield sequence to structure compatibility scores rather
than energies. They have no explicit physical basis and are con-
structions built purely for protein fold recognition~Huber & Torda,
1998a!.

To gauge the utility of secondary structure data, as might be
obtained from NMR assignments, we have a series of calculations
with synthetic data. We take a literature test set of protein se-
quences and folds, designed to test protein fold recognition meth-
ods~Rost et al., 1997!. Since correct structures are known, one can
generate secondary structure assignments as might have been ob-
tained by NMR. More usefully, one can delete various fractions of
the synthetic experimental data to create data sets spanning a range
from better to worse than real data. As well as synthetic data, some
examples of assigned secondary structures have been arbitrarily
chosen from the literature and the fold recognition calculations
performed with these real cases.

Results and discussion

Calculations using synthetic secondary structure data

Fold recognition was tested using the data set from Rost et al.
~1997!. This consists of 89 “probe” sequences, for which a struc-
ture is known. For each probe sequence, there is at least one
protein of similar structure, but without significant sequence ho-
mology. Structural similarity was defined usingRali of Equation 3
~Rost et al., 1997!. For the tests here, we used the 26 probe se-
quences that had a structural homologue similar for at least 70% of
their extent~Rali $ 0.7!. For each probe sequence, there is at least
one protein of similar structure, but without significant sequence
homology. The structural homologue~s! are then hidden in a li-
brary of 723 mostly decoy structures. A fold recognition method
should be able to take a probe sequence~and secondary structure
information! and find a similar structure at first rank. Since meth-
ods do not work perfectly, one needs some way to estimate suc-
cess. Here, we useQ~R! ~Equation 4 in Materials and methods!
simply so one can directly compare with literature~Rost et al.,
1997!. This measures how often one finds the first correct homo-
logue for a protein at a certain rank. IfQ~5! equaled 0.4, one would
have a 40% chance of the first correct homologue being in the first
5 ranked places. Given the size of the data sets, a random ranking
would give aQ~10! , 2%.

The results of the calculations with synthetic data are shown in
Figure 1. The better a set of results, the faster the curve rises
toward 100%. The plot shows several curves, each with a different
amount of data present. The best results are those with 100%
correct secondary structure assignments. The worst results are with
0% secondary structure assignments~the prediction method alone!.
Each of the curves with simulated data has a different amount of
secondary structure assignments randomly deleted0shortened~as
described under Materials and methods!.

In the absence of experimental data, the protein fold recognition
method gives a correct answer in first place about 10% of the time.
With ideal secondary structure, this improves to about 30%. One
might consider how often the first correct guess is found within the
top 10 places out of 723. With no experimental data, Figure 1
suggests one might expect to find a correct answer in the top 10
positions about one-third of the time. With perfect data, there is an
80% chance of the first correct prediction being in the top 10.

Experimental data, however, will not be ideal. One can observe
the effect by considering results with secondary structure dis-
carded. Surprisingly, it would appear from Figure 1 that with only
50% of the possible secondary structure data, the results are prac-
tically the same as with complete data. One could reasonably
expect to find a correct answer about 60–70% of the time in the top
10 guesses. In fact, with only 25% of the possible secondary struc-
ture data, there is still about a 50% chance of finding a correct
answer.

This work was geared to exploit sparse experimental data, and
there is no intention of revisiting the territory of comparing sec-

Fig. 1. Fold recognition,Q~rank!, using synthetic data, of varying quality.
Percentages in the legend give the amount of secondary structure informa-
tion used; 100% is ideal data, whereas 0% is the protein score function
alone. Predicted data are where the secondary structure data have come
from secondary structure prediction.
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ondary structure prediction methods. At the same time, it is easy to
run just one calculation for the sake of quick comparison with
methods using purely predicted secondary structure information.
The probe sequences were sent to a popular secondary structure
prediction server~Rost & Sander, 1993, 1994; Rost et al., 1994!,
and we accepted only high confidence predictions ofa-helices and
b-strand residues. This set of data performs slightly better than
having about 25% of the simulated secondary structure.

Calculations with experimental data

The results described above are with artificial data. It is possible to
do the calculations on real data from the literature, although this is
less controlled than synthetic data. Secondary structure assign-
ments for six proteins were taken directly from the literature as
listed in Table 1. The sequences spanned a range from where one
knew what to expect~from sequence homology! to those where
very little was known about the sequence. Three of the examples
had high sequence homology to a known structure, so they are
listed as “known” in Table 1. Next, a sequence may have poor
sequence identity to anything of known structure, but this is enough
to identify the overall fold. This is the case with P450 reductase,
which has 27% sequence identity to 5fx2, a flavodoxin of known
structure. Oncostatin M is similar. It has only 25% sequence iden-
tity to anything of known structure, but with functional informa-
tion it is assumed to be a cytokine. Finally, there is a protein in this
set where almost nothing is known about the structure~staphylo-
kinase! and one where the structure has just been published~gp41!.

For each sequence with its secondary structure data, Table 1
shows the top 10 guesses from each list of 1,692 candidates. Where
the fold can be reliably determined, a dagger is given next to the
template structure. For each guess, a z-score is also quoted. This is
a statistical measure, often used in fold recognition calculations,
which measures how many standard deviations an observation is
from the mean. In this application, a z-score of 1.8 for a structure
prediction would mean that the score of this candidate was 1.8

standard deviations away from the average calculated over all
1,692 candidates.

In each of the three cases where the protein fold is known,
Table 1 shows that the method has produced a correct guess in the
first or second rank. These particular sequences adopt rather com-
mon folds, so one could point out that the same fold recognition
could have been achieved using a simple sequence homology search.
This is true, but not relevant. The methods here use the library
folds as structural templates and will work in the absence of se-
quence homology. Quite impressively, Table 1 also shows a struc-
tural homologue for each of these sequences, which would probably
not have been found using straightforward sequence searches.

The second category of protein sequences are those where one
can be fairly certain of the overall fold, but with very little accu-
racy. Here, the method again seems rather successful. Oncostatin
M is known to be a cytokine~Hoffman et al., 1996!, and the sixth
rank guess is 1lki, the cytokine leukaemia inhibitory factor. This is
an example of how information from several sources can be com-
plementary. Of all the known Protein Data Bank~PDB! structures,
1lki is the most homologous to Oncostatin M~25% sequence iden-
tity!. This may be near the limit of significance. Combined with the
functional similarity and the predictions from the secondary struc-
ture, the overall fold of the protein is not in doubt.

For P450 reductase it will not be possible to judge the results
until the crystal structure is publicly released~Wang et al., 1996,
1997!. It has 27% sequence identity with 2fx2 and other flavo-
doxins have been used as the starting point for homology modeling
~Barsukov et al., 1997!. The first rank guess, 2dri, is not actually
a flavodoxin, but can be structurally aligned to one~1rcf! for 101
of its 169 residues with a root-mean-square difference of 3.3 Å. Of
the top 10 postulated homologues, 5 structurally align to 1rcf for
at least half their length, and 7 are nucleotide binding proteins
involved in oxidative or reductive synthesis.

The structure for the ectodomain of gp41 consists of two long
helices. Unfortunately, the list of predictions generated from the
secondary structure data~Caffrey et al., 1997! does not contain any

Table 1. Fold recognition using experimental dataa

Known Likely Unknown Solved

S100B Flavodoxin GRB2–SH2 Oncostatin M
C-P450

reductase SAK GP41

Rank
Z

score
Z

score
Z

score
Z

score
Z

score
Z

score
Z

score

1 1lpe 1.6 1rcfb 1.8 1ghub 2.2 1vom 1.8 2dri 1.7 1prn 1.5 1bcfA 1.6
2 1symAb 1.5 1ovfb 1.7 1japA 1.8 1reqA 1.8 7aatA 1.7 1ikfL 1.5 1ier 1.6
3 2gdm 1.5 1pkn 1.7 1gsa 1.7 1reqB 1.8 1pfkA 1.7 1crl 1.5 1fha 1.6
4 2spcA 1.5 2fx2b 1.6 1ayaAb 1.6 1sly 1.8 1pea 1.7 1lte 1.5 2spcA 1.6
5 1pbxA 1.5 1nal1 1.6 1chd 1.6 1ribA 1.8 1xyzA 1.7 1bbdL 1.4 1lpd 1.6
6 2asr 1.5 2fcrb 1.6 1csyAc 1.6 1lkib 1.7 4xis 1.7 1cleA 1.4 1cpq 1.6
7 1babA 1.5 3rubLc 1.6 1cglA 1.6 1csc 1.7 1fcdA 1.7 1ovaA 1.4 1sctB 1.6
8 1outA 1.5 1lbiA 1.6 1iae 1.6 1ygp 1.7 1pkm 1.7 1loeA 1.4 1bucA 1.6
9 1ncxc 1.5 1fcmA 1.6 1lst 1.6 1derA 1.7 1ldnA 1.6 1lybB 1.4 1lht 1.5

10 1hdaA 1.5 1pkm 1.6 1slm 1.6 1fps 1.7 8atcA 1.6 1rinA 1.4 1emy 1.5

aFor each test sequence with its experimental data, the PDB acquisition codes of the 10 top ranked predicted guesses are given.
bCorrect guess, when known or predicted by sequence homology.
cCorrect guess that is not predicted by sequence homology.

Protein fold recognition 1129



likely candidate folds. The gp41 column of Table 1 is dominated
by helical proteins such as ferritins, globins, and four helix bundles
but none are similar to the structure of gp41~Caffrey et al., 1998!.
This is disappointing, but may not be surprising since the calcu-
lation was done on the monomer, but, in solution, the protein exists
as a trimer. Finally, the predictions for staphylokinase are the most
speculative. The list of guesses is dominated by allb proteins.
Fortunately, one may eventually be able to judge these results
since a modified version of this protein has been crystallized~Chat-
topadhyay et al., 1997!.

One could say that the results show a remarkable improvement
of the fold recognition capabilities of the SAUSAGE program.
From a spectroscopist’s point of view, one might say that the
method provides a statistically useful method to use data that are
acquired as part of the NMR assignment process. Realistically,
there is about a 80% chance of finding a structural homologue in
the first 10 guesses for a sequence of interest if there is a reason-
able set of secondary structure assignments and if a homologue
exists, which is similar for about 70% of the extent of the struc-
tures. This does mean that the results from SAUSAGE still require
interpretation but much more confidence can be placed in the
predictions.

In practice the results claimed here are probably not unrealistic.
The method performs well even with very sparse data, and if
Figure 1 presents any slant, it is pessimistic. For comparison to
literature, we used theQ~R! measure from Rost et al.~1997!, but
this only reflects the first correct homologue for a sequence. In
practice, the first few guesses for a sequence may contain several
examples of the same fold as shown by some of the examples of
Table 1.

An interesting feature of this procedure is that a sequence to
structure alignment implies a model for the sequence, based on the
template structure. Obviously, this could be used as a starting point
for homology modeling. More importantly, this means that one
will often be able to make very quick judgments as to the relia-
bility of the results. For example, there is a small amount of in-
tramolecular distance information for the ectodomain of gp41. If
one wanted to pursue this, the models here could be checked for
compatibility with this or any other information.

The results also give some idea of the limits of the procedure.
The most obvious restriction is that one can only hope to do well
if the unknown structure is similar to a known structure. There are,
however, more subtle limitations, which can be illustrated with the
ectodomain of gp41. First, apparently simple patterns of secondary
structure do not seem very informative. Complex patterns with
mixed a-helices andb-strands of varying lengths seem quite ef-
fective at limiting the number of candidate folds. In contrast, sim-
ple patterns like the alla-helical data from the ectodomain of gp41
simply match to ferritins, globins, anda-helical bundles. Second,
there is a limitation or error in our modelling. We took the se-
quence of the ectodomain of gp41 by itself, but in solution, this
exists as a trimer~Caffrey et al., 1998!. The physical consequences
of this are clear. A hydrophobic residue in the sequence may be
hidden from the solvent when such a residue is in the trimer, but
the calculations will give the best results when such a residue is
buried within some, probably incorrect, structure.

One might also note a disappointing aspect to the results in a
numerical sense. The predictions for gp41 are wrong, but there is
little indication of this. The z-scores quoted are no worse than for
the other proteins. In fact, a z-score of 1.5 can be typical of correct
fold recognition as shown by the first three columns of Table 1.

Z-scores have achieved popularity in fold recognition calculations,
but they assume a Gaussian distribution of scores. In practice, this
is not the case for the aligned structures~data not shown!, and the
measure is not so useful. At the same time, it is clear from Table 1
that the rank order itself is useful.

In the more general field of protein structure prediction, there
have been several efforts using predicted secondary structure and
combining this with sequence similarity information. This is not
really comparable to the work here, which blends secondary struc-
ture data with a fold recognition function operating on three-
dimensional coordinates. Purely so as to give an example of what
might be expected, there is the one calculation shown in Figure 1
using secondary structure predictions from the PHD server~Rost
& Sander, 1993, 1994; Rost et al., 1994!. The results cannot be
compared with Rost et al.~1997! since we only used residues
predicted with very high confidence and only considered pairs of
proteins with somewhat higher similarity~Rali $ 0.7!. Using these
thresholds, there is a distinct improvement over the original fold
recognition functions. Probably the only clear interpretation is that
the local interaction terms in the structural score function are not
as good as the predictions from the PHD server. If they were, one
would not see the improvement when the secondary structure pre-
dictions are added.

One could experiment with different thresholds for prediction
confidence, but this would run counter to the spirit of this work.
The experimental data we have considered is sparse, but rarely
incorrect. The methods here are not robust when given incorrect
secondary structure~results not shown!, and this is what one might
expect ~Dandekar & Argos, 1994!. For some methods and cer-
tainly those here, incorrect data lead to worse results than missing
data.

If one was dealing with unreliable data, the issue of weighting
the experimental terms against the rest of the force field would be
critical. For this work,ksecof Equation 2 was chosen by gradually
increasing it until no improvement could be seen on test data. It
might be tempting to setksec higher since it is certainly more
reliable than the score function, but this can harm the alignments.
For example, 15 residues of a sequence may be correctly classified
as helical, but in the best template, the corresponding helix is
shortened by one turn~three or four residues!. If ksec is too high,
11 or 12 residues will be aligned to the correct helix, but a gap will
be introduced and the remaining three or four residues forced to
align to some other, incorrect helical region.

There is always the possibility that the experimental information
is of varying quality with some reliable and some speculative. In
that case, one could apply different weights~ksec! to different sites.
This is feature is implemented in the code, but not tested in this
work.

From a technical point of view, it is most interesting to compare
the methodology here with others who have used secondary struc-
ture ~predicted! in fold recognition~Russell et al., 1996, 1998;
Rice & Eisenberg, 1997; Rost et al., 1997!. In these cases, a
similarity matrix was used for physical properties such as second-
ary structure, much in the same manner as for sequence compar-
isons. In this work, similar discrete score methods were found to
be quite sensitive to thresholds and definitions. For example, re-
sults would depend on when a structural motif was taken as a
series of turns or when it was regarded as a fragment ofa-helix
~D.J. Ayers & A.E. Torda, unpubl. data!. This problem has been
seen by others~Di Francesco et al., 1997! and tackled by loosening
the criteria for some secondary structure states. In this work, the
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continuous formulation of Equation 1 was more robust than any
function based on discrete secondary structure states.

One obvious question is what other data would easily fit into the
framework of fold recognition. In the SAUSAGE implementation,
properties that can be described as a structural characteristic of a
site can be used for both alignment calculations and the ranking of
guesses. This might include data such as the direct use of3J
coupling or solvent accessibility. Properties that depend on spe-
cific pairs of amino acids~such as long-range nuclear Overhauser
effects~NOEs! or knowledge of disulfide bonds! are more ame-
nable to ranking generated sequence to structure alignments. Ul-
timately, if one keeps adding information, one should probably use
something like a low resolution distance geometry or simulation
approach~Smith-Brown et al., 1993; Aszódi et al., 1995; Skolnick
et al., 1997!. With enough experimental data, these considerations
become irrelevant and conventional distance geometry or re-
strained molecular dynamics would be appropriate.

Finally, one can say that the score function0force field used here
includes more signal than noise and is complementary to the in-
formation from recent sophisticated comparison matrices. If that is
the case, there it should be possible to combine the methods, add
sparse available data, and make even better use of experimental
results.

Materials and methods

Score functions and calculations

Sequence to structure alignments and the ranking of trial structures
were carried out using the SAUSAGE program, parameter sets,
and two step approach of Huber and Torda~1998b!. The experi-
mental input consisted of only the protein sequence and secondary
structure, regardless of their source. Secondary structure informa-
tion was encoded in a termEsec based on the backbone dihedral
anglec of the template structure.

Esec5 cos~c0 2 c! 1 1 ~1!

wherec0 is the ideal backbone dihedral angle. Fora-helicesc0 5
2478 ~IUPAC-IUB, 1970! and forb-strands,c0 5 1248, a value
appropriate for either parallel or antiparallel sheets~IUPAC-IUB,
1970!. The total score was given by

Etot 5 Escr 1 ksecEsec ~2!

whereEscr is the protein fold recognition score andksec gives a
relative weight to the experimental secondary structure data. As
implied by Equation 1, we adopt the convention, opposite to en-
ergy, that a more positive score is more satisfactory.

Sequence to structure alignments were carried out using a dynamic
programming algorithm~Needleman & Wunsch, 1970!, with Escr

given by the scoring function described as neighbor nonspecific
~Huber & Torda, 1998b!. Ranking of the generated alignments was
done withEscr given by the neighbor specific score function. Val-
ues of adjustable parameters are given in Table 2. Sequence sim-
ilarity searches were done with the BLAST package~Altschul
et al., 1990!.

Measures of fold similarity and recognition

Calculations on synthetic data rely on having pairs of similar struc-
tures within a library of decoy proteins. One member of each pair

is called the probe sequence, and the question is whether the fold
recognition method can find the probe sequence’s structural rela-
tive among the decoy proteins. This requires a criterion as to what
constitutes a homologous pair. For this, the FSSP database with
structural alignments was used~Holm & Sander, 1994a, 1994b,
1996, 1997, 1998!. For a pair of aligned structures, one knowsLali ,
the number of aligned residues, andL1 and L2, the number of
residues in structures 1 and 2. Then a measure of similarity was
taken from Rost et al.~1997!.

Rali 5
2Lali

L1 1 L2
. ~3!

Successful of fold recognition was quantified following Rost
et al.~1997! using the measure of the cumulative frequency of the
first successful prediction,Q~R!.

Q~R! 5 100(
r51

R Ncorr~r!

Nprobe
~4!

whereNcorr~r ! is the number of first correct folds detected at rank
r and Nprobe is the number of probe sequences in the test set. A
Q~10! of 50 means that, considering all probe sequences, there is
a 50% chance of finding the first correct homologue in the top 10
guesses. The measure is used for a comparison to literature, but
one may note that it does not show when more than one correct
homologue is detected.

Test data sets

Using the test set from Rost et al.~1997! requires an arbitrary
decision as to what constitutes structural similarity. Using theRali

measure given by Equation 3, and setting a threshold of 0.7 gave
a set of 24 test sequences and 37 structural homologues hidden in
the fold library as listed in Table 3.

For tests with real data, a library of 1,692 proteins was used as
described in T. Huber and A.E. Torda~in prep.!. This is essentially
the whole PDB with only the most obvious sequence homologues
removed.

For testing with real data, seven proteins~Table 4!, each with
recently published secondary structure assignments, were chosen.
The authors’ secondary structure assignments were used exactly as
published with no further interpretation.

Input data

The input used by the SAUSAGE program consists of the se-
quence, as its one letter code, and the secondary structure data. The

Table 2. Parameters used in the alignment and fold
recognition calculationsa

kgaps kins ksec

Alignment 1,000 1,000 100
Ranking 500 500 100

akgapsandkins are gap and insertion penalties used in sequence to struc-
ture alignments described in Huber and Torda~1998b!; ksec is given in
Equation 2. All quantities are in arbitrary units.
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secondary structure data can be in one of three forms. It can be in
either the very simple manual input, the output from the CSI
program~Wishart & Sykes, 1994a! or the output from the PHD
~Rost & Sander, 1993, 1994; Rost et al., 1994! server.

Synthetic secondary structure data

Ideal secondary structure data for the 22 test sequences was cal-
culated using the DSSP program~Kabsch & Sander, 1983!. To
better simulate NMR data, onlya-helical andb-strand secondary
structure assignments were used. Other elements are less likely to
be assigned from chemical shift data. To simulate poor data, sec-

ondary structure elements were randomly shortened until the de-
sired fraction of data was discarded. Random deletion in this fashion
meant that smaller secondary structure elements were likely to
disappear completely as would be the case with real experimental
data.

Predicted secondary structure data

The sequences for the test set of Rost et al.~1997! were submitted
to the PhD server~Rost & Sander, 1993, 1994; Rost et al., 1994!.
From these secondary structure predictions, data were used for
residues predicted to be in ana-helix or ab-strand with a confi-
dence of eight or nine~on a scale of zero to nine!.

The package is available as source code at ftp:00ftp.rsc.anu.
edu.au0pub0torda0sausage0README and documentation is at
http:00www.rsc.anu.edu.au0;torda0sausage.html

Note added in proof

We wish to note that the coordinates of Wang et al.~1996, 1997!
for NADPH-cytochrome P450 reductase have now been released
and are available from the Protein Data Bank as 1AMO.
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