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ABSTRACT We describe two ways of optimiz-
ing score functions for protein sequence to struc-
ture threading. The first method adjusts parameters
to improve sequence to structure alignment. The
second adjusts parameters so as to improve a score
function’s ability to rank alignments calculated in
the first score function. Unlike those functions
known as knowledge-based force fields, the result-
ing parameter sets do not rely on Boltzmann statis-
tics, have no claim to representing free energies and
are purely constructions for recognizing protein
folds. The methods give a small improvement, but
suggest that functions can be profitably optimized
for very specific aspects of protein fold recognition.
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INTRODUCTION

For a molecular mechanics calculation, it is common to
try to use a model that directly reflects nature. Such a
model should work under a range of conditions and be
transferable from system to system. If, however, one is
only interested in a single specific property, it may not be
necessary to chase the perfect force field and parameters.
It may be easier to find some score function specialized for
this property. This work is based on this idea and the goal
of finding functions for protein fold recognition/threading
even if the functions do not reflect real energies or other
molecular mechanics properties.

This goal leads to distinct differences between special
purpose scoring functions and more general force fields. In
a simple scoring function, it is not necessary to closely
mimic the laws of physics. Instead, interactions may be
represented by some set of functions which are easy to
parameterize. For example, smoothed contact functions
are a gross simplification of nature, but may be easy to
optimize for protein sequence to structure threading.!

Next, there will be differences in how one chooses the
parameters that characterize the interactions. In an atom-
istic force field, properties such as bonds lengths, angles,
and so on could just be taken from experiment or some
higher level calculation.2> For a score function for protein
sequence-structure threading, there are several ap-
proaches one could take. One could assume that protein
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structures follow a Boltzmann distribution and calculate a
potential of mean force from known protein structures.t-8
Another school of thought is that one should simply try to
discriminate good sequence-structure pairs from unlikely
ones.® This is usually done by optimizing a score function’s
ability to distinguish ideal sequence-structure pairs from
some set of incorrect (misfolded) sequence-structure
pairs.110-14

This work continues along these lines where one first
defines a measure of score function quality and then
adjusts parameters so as to maximize the quality function
using some set of training proteins. This idea is extended
by splitting the task of protein sequence to structure
threading into two sub-problems with a special parameter
set for each. It is shown how one might optimize one score
function for protein sequence to structure alignment and a
totally separate function for ranking the calculated align-
ments.

The rationale for this is that different score functions
work best in different problem domains!® and it is clear
that sequence to structure alignment is a different prob-
lem to ranking of aligned structures. In the first step
(alignment), there is a sequence of interest which has to be
aligned to each member of a library of 102 to 103 candidate
or decoy structures. In the second step (ranking), one
wants to rank the 102 to 10° generated structures accord-
ing to which is closest to the (unknown) native structure.
During alignment calculation, the set of decoys is very
large since one should allow for a gap in either the
sequence or template of any length and at any position.
Formally, this means that the searching problem is NP-
complete.t® Physically, this means that the set of decoys is
not limited to compact, protein-like structures since it
implicitly includes the astronomical set of wrong align-
ments and, conceptually, structures with additional or
missing residues. In the second phase, one has a small set
of just 102 to 102 alignments which have to be ranked. The
set of alternative/decoy structures is a set of (hopefully)
optimal alignments on non-optimal templates.

Score functions for both phases were parameterized by
building a penalty function that operated on score function
parameters. Although the score functions were continu-
ous, the penalty functions for optimizing them were not.
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Instead, they were discrete measures based on alignment
quality or ranking of correct folds. This meant that a crude
Monte Carlo-like scheme was used for parameter adjust-
ment with old parameter sets as the starting point. The
parameterization process also differed from earlier work in
that ideal data was not restricted to native protein struc-
tures. In addition, structure-structure alignments were taken
from the literature.1’-20 Regardless of debates about struc-
tural alignments,?%22 it would still be an achievement for a
score function to produce sequence to structure alignments
of the quality of structure to structure alignments.

MATERIALS AND METHODS
Protein Sets for Parameterization and Testing

For parameterization with native sequence-structure
pairs, a list of 370 protein databank?324 (PDB) structures
was taken from a published collection?>26 as previously
described such that each chain had more than 100 resi-
dues, all backbone heavy atoms were present and no two
protein chains had more than 25% sequence identity.

For parameterization with sequences and near-native
structural homologues, sequences were chosen from the
representative set of protein structures?>26 (October 1997
release) such that no two had more than 35% sequence
identity. A set of sequence-structure pairs was built by
taking structural homologues from the FSSP library17-20 of
structurally aligned proteins. For each sequence, struc-
tural homologues were used where the structural align-
ment showed at least 70% of the sequence’s residues to be
aligned to the structure, all heavy backbone atoms were
present in the structure and where the sequence identity
(sequence to homologue's sequence) was less than 40%.
This resulted in 576 sequences aligned to 1,183 template
structures.

Fold recognition was measured using a standard set of
88 protein pairs?’” where the members of each pair are
structurally similar, but supposedly not sequence homolo-
gous to each other. One member of each pair has been
declared a probe sequence and the structure of the other is
hidden in a library of 725 decoys. Entries in the set which
had been superseded in the July 1997 PDB release were
replaced by newer versions. The set contains pairs with
varying degrees of structural similarity and this could be
quantified. Given the length of the probe sequence, L4, the
length of the template structure, L, and the number of
aligned residues from a structural alignment L,;, one can
define a ratio Ry;

2 X Ly
Rai =51
1 2

@
This measure is not ideal if the length L, is very different
from L,, but was used to allow comparison with litera-
ture.?”

Alignment quality was tested using a subset of se-
quences that had at least one homologue with Ry; = 0.7.
This was an arbitrary threshold, but defines a goal for the
parameters. Higher values correspond to similar struc-
tures, which are less of a challenge for alignment. Lower

TABLE I. Sequences Used For Alignment Testing

Probe Template

sequence? structures?

1bct 1bct 1fosF

1cpcA lash lbabA  1cpcA  1cpcB  2hbg 3sdhA
lcpt lcpt loxa 2hpdA
ldvh lcch leyj ldvh lycc 451c
leaf leaf 3cla

1frpA 1frpA 1limbA

1fxd 1fca 1fxd

1gfc laboA  1gfc

lhryA lhma lhryA

lirk lcdkA  1csn lirk

llccA llccA 1r69

1ImdyA 1ifi 1ImdyA 2dgcA
1pba lctf 1pba 2bopA
1plg 1plg 2polA

1pls 1btn ldynA 1pls

1pyp lino 1pyp

1ss0 lhumA 1sso 3il8

1tie 1bfg 1lhce 1tie 2ilb
IxxaA IurnA  1xxaA

2cyp larv 2cyp

2pna 1lIkkA  2pna

3ebx lcds 3ebx

aPDB acquisition code with chain identifier appended if necessary.
bProteins used as templates on to which sequence was threaded during
alignment testing.

values introduce too much dissimilarity and could be seen
as a noise source in the parameterization. This reduced set
of 24 sequences with their associated homologues is listed
in Table I.

Alignment and Fold Recognition Measures

Sequence-structure alignment success was measured by
calculating the average shift error. This compares the
calculated alignment with some ideal'”-2° and is simply
the average number of sequence positions by which each
residue is incorrect. Fold recognition success was mea-
sured following Rost et al?” using the cumulative fre-
quency of the first successful prediction, Q(R)

R
Q(R) — 100 E Ncorr(r)

r=1 prot

@)

where N (r) gives the number of correct first-rank folds
at rank r and Ny is the number of probe sequences in the
test set. A Q(10) of 50 means that, considering all probe
sequences, there is a 50% chance of finding the first correct
homologue in the top ten guesses. The measure is used for
a comparison to literature, but it may underestimate
success since does not show when more than one correct
homologue is detected.

Alignment and Ranking Calculations

All sequence-structure alignments, score function calcu-
lations and rankings were carried out using the sausage
package.?® Sequence to structure alignments were carried
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out using a function referred to as ALIGN-I or ALIGN-I11
depending on whether it used parameters before or after
Monte Carlo optimizing. Ranking of the calculated align-
ments was carried out using a function referred to as
RANK-I or RANK-II, again referring to parameter sets
before or after Monte Carlo optimizing. The ALIGN func-
tion is based on the unusual idea of a neighbor non-specific
score function.?® This means that from each interaction
pair, the coordinates of both interaction sites are used, but
the identity of only one member is used. This allows a score
to be calculated for a sequence residue at a template
position, without knowing the alignment of the rest of the
sequence. Alignments can then be calculated using an
adaptation of a dynamic programming algorithm com-
monly used in sequence-sequence comparisons.®® This
guarantees an optimal alignment with a distinctly non-
optimal score function and is an alternative approach to
the alignment problem which others have treated by the
frozen approximation3-33 and double-dynamic program-
ming methods.8 Ranking of calculated alignments was
carried out using a more conventional neighbor-specific
score function.

During both alignment and ranking calculations, inser-
tions in sequence (gaps in template) were penalized using
a conventional gap opening/widening scheme so that the
penalty, E;,s was given by

0 N;,s =0
kinsEopen I\Iins =1
e ) ®
ins[Eopen + Ewdn(Nins 1)] 1< Nins < Nmax
kins[Eopen + Ewdn(Nmax - 1)] Nins = Nmax

Eins =

where kjns was a scaling constant, N;,s the number of
inserted residues, Egp, was set to 0.3 and Euqgn (9ap
extension cost) was set to 0.01. For gaps in the sequence, a
more sophisticated, geometric gap penalty could be used.
For some alignment to a template, one can calculate the
distance between sites in the sequence. The gap penalty,
Egap, Was calculated based on the distance

0 dCiNj =d,
= — kgap(d(Z:iNj - dg) dO < dCiNj = dmax (4)

kgap (d2 - dg) dCiNJ > dmax

max

Egap

where dci,\,j is the distance between the carbonyl carbon of
residue, i and the amide nitrogen of the next residue, j.
Distances do and d.x were set to 1.37 A and 10 A
respectively.

The score functions, parameter sets, and gap and inser-
tion penalties are summarized in Table Il. Ranking force
fields were used with alignments generated by more than
one alignment method and this is also listed in the table.

Functional Form of Scoring Functions

Functional forms for all scoring functions were based on
hyperbolic tangent functions that have been described in

TABLE Il. Parameters Used For Alignment Testing

Alignment

Score Optimi- parameter Gap  Insertion
function Purpose  zation? set penalty? penalty®
ALIGN-I alignment z-score 10,000 10,000
ALIGN-II alignment MC 5,000 10,000
RANK-1  ranking z-score  ALIGN-I 500 1,000

z-score  ALIGN-II 500 100
RANKG-II  ranking MC ALIGN-I1 1,000 500

MC ALIGN-II 1,000 500

az-score: parameters optimised by z-score optimization; MC: Monte
Carlo used to adjust parameters.

bThe gap penalty in (score units A-2).

¢The penalty for residue insertion in (score units residue1).

detail previously. Five interaction sites were used for each
amino acid, located at the backbone N, C¢, C, and O and
side-chain CP atoms. A CP interaction site was calculated
for glycine residues assuming ideal geometry. There were
20 types of CP particles corresponding the different residue
types, but only one type of each backbone atom, giving a
total of 24 types of interaction site.

Neighbor Non-Specific/ALIGN Scoring Function

The total score in the neighbor non-specific scoring
function with either ALIGN-I or ALIGN-II parameters for
a sequence-structure alignment over N, residues is given

by

5Nres S5Nres Nres
E?ootn—spec = E 2 Egg?r—speC(i‘ J) + ; Esol(k) + Egap + Eins (5)
i i

where the indices i and j run over all aligned residues and
the sums are performed over all 5N, interaction centers.
Egap and Eins are as given by Egs. (3) and (4). EZrP* is a
neighbor non-specific pair score term depending on the
type t; of residue i only. At a topological distance s;; and a
Cartesian distance dj; it is given by a sigmoidal function

Epair (1, 1) = Ppair(Sij» t)(1 — tanh(wpyq(d;; —

pon %) (6)
where ppair(sij, ti) is a parameter determining the interac-
tion strength, d;j is a reference distance determining the
step position and wp,;, determines the slope of the interac-
tion function. Only three classes of topological distances
are considered. Thesearej=1i+2,j=i+3andj>i + 3.
Interactions between adjacent residues j = i + 1 are only
treated by the gap penalty term, Eq. (4).

The “solvation quasi-energy” or particle environment
score Eg is calculated by a similar function

Esa(i) = Pso(ti)(1 — tanh(ws,(n(i) — no))) @)

where pg, is a score function parameter, wg, a parameter
determining the function's slope, n(i) is the number of
residues within a shell of 5.8 A C«-C« distance, but
separated by more than three residues in the sequence.
The neighbor count parameter nC is set to 3.
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Neighbor Specific/RANK Scoring Function

The neighbor specific score (used in ranking calcula-
tions) is calculated from the function

5Nres 5Nres Nres

B = > D) ERe(i,j) + ; Eco(K) + Egap + Eins  (8)

i i

where Ej,s and Ey,, are as given by Eqgs. (3) and (4) and E,
is as given by Eq. (7). Unlike the ALIGN function, the
interaction parameter ppair(Sij, ti,t;), and the pair score EXT
both depend on both residue types t; and t;.

Epair(ls 1) = Ppair(sij, B 1)(1 — tanh(w(d;;

pair

—dp) )

Gap Penalties in Score Function Optimization

The ALIGN-II parameter set optimization (described
below) included the influence of gaps and insertions. For
the sake of speed, gaps in sequence and structure were
penalized according to a conventional gap opening/
widening scheme rather than the more elaborate gap
scheme of Eqs. (3) or (4). This simpler penalty, was based
on Nins, the number of inserted residues

rude 0 for Njps = 0
Eins = _ - (10)
kopn + kwdn(Nins 1) for Nins =1

where Ko, is the gap opening penalty and kyq, the penalty
for widening an existing gap.

During optimization of the RANK-II parameters, align-
ments did not have to be recalculated, so the geometric gap
penalty of Eq. (4) could be used. d»x Was set to 8 A.

Parameter Optimization

ALIGN-I and RANK-I parameters were taken from
previous work. Both had been built using a method based
on z-score optimization where one maximizes the score
difference between a correct sequence-structure pair and
the average over incorrect (misfolded) sequence-structure
pairs. The process operated on 370 sequences simulta-
neously with a total of more than 10® misfolded structures.
In this section, we describe how more specialized score
function goals were cast into target functions and opti-
mized for alignments (ALIGN-II) and ranking of struc-
tures (RANK-II).

The purpose of the ALIGN-II parameters is to achieve
the best possible sequence-structure alignments, so the
optimization process was geared to this goal alone. Align-
ments (sequence-structure) were calculated at each step
with a fast (but potentially non-optimal) local similarity
algorithm.3* These were compared to supposedly ideal
structure-structure alignments from the FSSP library.17-20
Alignment quality was quantified by a truncated root
mean square distance difference (RMSD*) with had a

threshold of (10 A)Z for grossly misaligned residues

RMSD* =
(10 A)? if residue i is
not aligned
- i (10 A)? if (ri; — rigep) )
all FSsp > (10 A)2
residues i i i 5 - i i
(i = Tessp)® iF (M — Tessp)
< (10 A)?
where (rl,; — rieep) is @ measure of how far a residue is

misplaced in the alignment compared to the FSSP Ii-
brary'7-20 and the summation runs over all residues which
have been declared structurally similar in the reference
alignment. Unlike the more common root mean square
difference value for structural comparisons, this measure
does not involve structural superpositioning. The target
function used to optimize the ALIGN-II score function was
the arithmetic average of the RMSD* measure of all 576
protein pairs in the training set.

N=576
pairs

th=N" > RMSD* (i [risse) (12)

i=1

Initial parameters were taken from the ALIGN-I score
function except for gap opening and widening which were
arbitrarily set. 3,400 steps of Monte Carlo at T = O with a
step size of 5 (parameter units) were performed to mini-
mize target function t1 with respect to 362 score function
parameters. Over the course of this minimization, the
value of the target function t1 decreased from 6.69 A to
6.06 A. All the calculations were performed in parallel on
12 processors of a Fujitsu AP3000 and took less than 24
hours total time.

The optimization of the fold ranking function param-
eters (RANK-I11) was quite different since its sole purpose
is to rank precalculated alignments. The function will not
be confronted with all possible protein conformations, but
merely a set of alignments generated by the previous
alignment function. This generally excludes alignments
which are unusually short or with many gaps. In order to
optimize the ranking capability of the RANK-II param-
eters, alignments of all 576 protein sequences to all 1,183
structures in the template library were calculated, result-
ing in a total of 681,408 sequence to structure alignments.

Faced with optimizing rankings, one might use a mea-
sure such as Kendal’s tau.®> This is not suitable in this
work as the main goal is to ensure that near-native
alignments are well ranked. One is not really interested in
the behavior of poor ranking alignments. This was en-
forced with a simple scheme wherein each native-like
alignment was given a penalty according to its rank.
Near-native alignments, were selected by first calculating
the root mean square (RMS) difference over all aligned
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residues after optimal translation and rotation and ac-
cepted if the RMS difference was less than an empirical,
size-dependent threshold Rpay,

Rmax = O.Z(Na“ - 25)1/3 (13)

where Ny is the number of aligned residues. Up to 20
near-native alignments were permitted per sequence, but
typically less than five were present.

Given this list, a ranking G was calculated at each step
of parameterization by

N

a- >

native-like j

log,, (rank(j)). (14)

This uses a logarithmic function to account for the fact that
rank difference is important for well-ranked structures.
That is, the difference between 15t and 5% rank is impor-
tant, but between 5015t and 505%™ is not. Although only
well-ranked alignments will significantly contribute to G,
the scores of the alignment for the sequence to every
member of the structure library have to be calculated.

The final target function, which was optimized, is the
sum of G over all proteins in the training set

N=576
proteins

2= > G() (15)
i=1

t2 was initially optimized with respect to five parameters
(one for geometrical gap penalties, two (opening and
widening) for insertions into the structure and two more to
penalize unaligned sequence and structure sites. This was
followed by 7,500 Monte Carlo steps at temperature T = 0
in which the target function t2 was minimized with respect
to all 920 + 5 scoring function parameters. The total
optimization, including generation of lists of near-native
structures, was performed in parallel on a Fujitsu AP3000
and took approximately 24 hours on 12 processors.

RESULTS

The aim of this work is to test the feasibility of optimiz-
ing separate functions for sequence to structure align-
ments and ranking of calculated alignments. The first
question is whether the score functions can be improved
given a good starting point. Figure 1 shows the value of the
target function t1, Eq. (12) over the course of the optimiza-
tion which was used to move from the ALIGN-I to ALIGN-11
parameter sets. One might expect this to be a rugged
energy surface since each step involves readjustment of
the entire set of alignments. Despite this, the plot clearly
shows that the ALIGN-II parameter set is driven to some
minimum on the energy surface.

Figure 2 shows the progress of the optimization of the
ranking parameter set beginning with RANK-I, moving to
RANKG-II. In this case, each function evaluation requires
calculating the score of all alignments followed by re-

6.9
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t1 [Angstrom]
o o o o o
N w P [} [=>]

o
-

a4 2
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MC step

Fig. 1. Optimization of ALIGN-II parameter set. Function t1, Eq. (12),
measures the quality of the score function at each step in A.
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4100
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3900

MC step

Fig. 2. Optimization of RANK-II parameter set. Function 2, Eq. (15),
measures the quality of the score function at each step in arbitrary units.

ranking. The target function does improve although not as
smoothly as in the previous plot. It also appears that some
small improvement may have been achieved by even more
optimization steps. For this optimization, one can look at a
quantity other than the target function used to measure
quality. At each step, the percentage of correct structural
homologues at each rank was stored and is displayed in
Figure 3. For example, less than 25% of correct homologs
are found in the first five places with the initial param-
eters. This rises to more than 30% by the end of the
calculation.

With apparently improved parameters on training data,
the next step was to measure the score functions’ perfor-
mance on test protein sets.?” Firstly, the alignment quality
was measured since this underpins the subsequent fold
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rank 1

cumulative % at rank

o 4 ] 'l 2 2
0 1000 2000 3000 4000 5000 6000 7000
MC step

Fig. 3. Progress of RANK-II parameter set optimization in top five
ranks. Each line shows the average cumulative percentage correct native
like structures at that rank.

TABLE Ill. Average Shift Errors For Alignment
Score Functions

Alignment score function? Shift error®
ALIGN-1 5.1
ALIGN-II 4.6

aAcronyms as in Table I1.
bAverage residue shift error with respect to structural alignment.

recognition/ranking step. To test this directly, Table 111
gives the average shift error for the initial (ALIGN-I) and
optimized (ALIGN-I1) parameter sets. Not surprisingly,
the ALIGN-I1 set performs better. The optimization proce-
dure was primitive, but was designed so that the param-
eter set would improve for its specific task.

The next measure was to compare the parameter sets
(RANK-I and RANK-II) and the overall fold recognition
capability. This was done using the entire set of sequences
and homologs and the Q(R) measure (Eqg. (2)). The first test
of ranking ability was done using alignments calculated
with the new alignment parameters. Figure 4 shows that
the new RANK-I1 parameter set performs better (except at
one rank) although the difference is small. Next a different
property of the ranking functions was tested. Earlier work
has shown a weakness of the score functions is the
inability to tolerate structural errors. A structural pertur-
bation that seems small to a human may give a huge
change in score or energy. For this reason, the ranking
parameter sets were compared, but using the poorer
alignments generated by ALIGN-I and the results are
shown in Figure 5. With these weaker alignments, the
performance of the RANK-II function is clearly superior
and suggests that the newer RANK-II score function is
more tolerant of alignment shift errors. This desirable
property is not surprising since a tolerance of structural
error was built into the parameterization data. There is
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Fig. 4. Q(R) of RANK-II and RANK-I ranking score functions for
alignments calculated using ALIGN-II.
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Fig. 5. Q(R) of RANK-II and RANK-I ranking score functions for
alignments calculated using ALIGN-I.

further evidence for the improved tolerance of structural
errors. From the complete test set, one can extract the
more similar sequence structure pairs based on Ry, EQ.
(1). If one considers the more similar pairs with, for
example, R, = 0.7, then the advantage of the RANK-II
parameters disappears (data not shown).

DISCUSSION

One problem encountered in the construction of knowl-
edge-based force fields is whether all parameters are
adequately defined by the experimental data. Some amino
acid pairs are relatively rare and the associated param-
eters ill-determined. This has prompted some debate as to
whether a sparse data correction is”-36 or is not3” necessary.
This work attempted to avoid this question by increasing
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the parameterization data and treating precalculated struc-
tural alignments as ideal data. Obviously, there are cases
where the structural alignments are ambiguous?:22 but
these exceptions are not an issue given the more serious
lack of reliability of alignment methods. The use of slightly
imperfect data in the parameterization has a more interest-
ing implication. We know that a practical weakness of
some score functions is that they are low-resolution repre-
sentations, but can be too sensitive to structural details.
For example, a Glu to Asp mutation may be very common
in nature and should not be penalized in a score function.
The use of natural near-native structures in the parameter-
ization tends to build this lack of specificity into the score
functions and may be partly responsible for the tolerance
of weaker alignments demonstrated by Figure 5. The
alignments in that calculation are not optimal (shown by
Table 111), but performance with the RANK-I11 force field,
based on near-native structures is clearly better than the
RANK-I parameter set based on only native structures.

One aspect that is not dealt with properly is the degree
of tolerance which is acceptable or desirable, and clearly
the decisions are quite arbitrary. One set of alignments
were used with associated thresholds and decisions on
structural similarity.1-20 A different set of aligned struc-
tures with different thresholds®® would produce different
parameters. This could be used to tune functions for
special purposes. For example, one can probably improve
performance on very weak homologs by using correspond-
ing parameterization data.

The parameterization methods used here only demon-
strate the feasibility of the approach, rather than produce
final score functions, but this is enough to make several
points. There are properties which are desirable in fold
recognition methods and which should be built into a
parameterization strategy. Unfortunately, such optimiza-
tion methods will always be difficult since one is working
with functions that depend on a large number of native
and perhaps misfolded protein structures. The approach
here has been to use a very expensive target function such
as Eq. (12) or (15), but to make the method tractable by
using good starting parameters and assuming that only a
few optimization steps are necessary. Even given a good
starting point, there is no evidence that the global opti-
mum in parameter space has been found and this has
suggested two future directions. Firstly, it will be useful to
postpone the search for the globally optimum parameters
and instead use a better local minimizer to find locally
optimum parameters. Next, it is still interesting to explore
parameter space more thoroughly. With the present re-
sults, one other observation can be made. The ranking
score function parameters (RANK-I11) converge more slowly
than the alignment parameters (ALIGN-II). Figure 2
shows t2 still improving after more than 7,000 steps
whereas t1 stops improving in less than 2,000 steps (Fig.
1). The most likely explanation is very simple and does not
involve speculation about the shapes of the energy (cost)
surfaces. The alignment score function used in tl is
neighbor non-specific, using the identity of only one mem-
ber of each interaction pair. Consequently it has less than

half the number of adjustable parameters of t2. The search
space is correspondingly smaller and faster to search.

Another question is whether the functions optimized are
ideal. Function t1 (Eq. (12)) is based on the degree to which
alignments correspond to the best structure that could be
made given an appropriate template. Its’ use does involve
arbitrary decisions for treating unaligned residues and
functional forms. More seriously, the implementation re-
lies on alignments from a potentially non-optimal similar-
ity algorithm3* rather than the full dynamic programming
algorithm we have generally used for alignments.3°

The function t2, (Eq. (15)) used to optimize ranking has a
more unusual property. Optimization should move correct
alignments to a better rank within some library, but this
depends on the members of the library. This may not give
parameters that are physically meaningful, but results in
ones that are tuned to the whole fold recognition machin-
ery. It has been noted that different score functions per-
form best for different sets of decoys.’® The optimization
scheme used here explicitly generates parameters for
some set of decoys.

The results hint at some problems with either optimiza-
tion or testing. The plots of score function optimization
(Figs. 1 and 2) show an apparently significant performance
improvement, but the fold recognition tests (Figs. 4 and 5)
show much smaller differences. There are two likely
reasons. Firstly, there are some limits of the framework of
the current score functions with the low-resolution pair-
wise interactions, few topological classes, and neglect of
sequence similarity scores. There are probably more subtle
problems to do with measures of success. For example,
sequence shift error is a popular measure, but it is not
sensitive to differences in local structure. It is also bounded
by the size of the proteins and would be more meaningful
in the context of errors corresponding to random align-
ments.

The issue of different functions for different tasks will be
pursued further. If one accepts that different functions will
be best for calculating alignments and ranking them, it is
quite possible that different functional forms will be best
for each task. Certainly, there is no reason to believe that
the same interaction sites should be used in both cases.
For example, the alignment score function should favor
the creation of protein-like structures with reasonable
hydrogen bond networks. This suggests that interaction
sites at the backbone hydrogen bonding atoms are impor-
tant. In the next step, most of the candidate alignments
will be compact, regular, and protein-like. To discriminate
amongst these, the contribution from hydrogen bonding
sites will be less useful.

Considering all the questions raised by score-function
optimization, it would seem that there is not yet a clear
ideal method, but one should be able to improve on the
simple idea of discriminating native from non-native struc-
tures.110-1 |t is also clear that there will be trade-offs
among speed, accuracy, specificity, and tolerance of struc-
tural changes. The formulations used here illustrate one
set of trade-offs. Most importantly, the optimization ma-
chinery is robust, able to deal with large parameterization
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data sets and seems well suited to the development of new
forms of score function.
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