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Biased Monte Carlo optimization of protein sequences
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We demonstrate the application of a biased Monte Carlo method for the optimization of protein
sequences. The concept of configurational-biased Monte Carlo has been used, but applied to
sequence/composition rather than coordinates. Sequences of two-dimensional lattice proteins were
optimized with the new approach and results compared with conventional Monte Carlo and a
self-consistent mean-fielSCMPF method. Biased Monte CarldIC) was far more efficient than
conventional MC, especially on more complex systems and with faster cooling rates. Biased MC did
not converge as quickly as SCMF, but often found better sequence2000 American Institute of
Physics[S0021-9606800)51030-7

I. INTRODUCTION Recently, in an effort to try and avoid problems associated
with large energy barriers and rugged search spaces, mean-
If the amino acid sequence of a protein is written down,field approaches have been receiving some intéteBhis
there is a very good chance a molecular biologist can promay be seen as an approach which by-passes the discrete
duce it in useful quantities. Unfortunately, the ability to de- nature of the problentsites have partial amino acid charac-
sign a “better” amino acid sequence lags behind the experiter) and may also be promising for protein sequence
mental capability to produce it.It remains remarkably optimization*?~1°
difficult to find an approximation to an ideal protein se-  MC has several attractive properties in principle, with
quence and it is only recently that there have been examplgsiactical disadvantages. With infinite computer time and
of large-scale protein redesign where one takes a given strugtow cooling (simulated annealingit will find the lowest
ture and attempts to find a sequence that will be more sfableenergy sequence. It also has the desirable property that at
The practical applications are clear. It would often be usefufinite temperature, it does not offer just one solution, but an
to take a native protein and change the amino acid sequeng®semble of solutions with a know(Boltzmann distribu-
to make it more heat stable or perhaps change it in part so a®n. Since computer time is finite, it would be desirable to
to accommodate some chemical modification. improve the sampling ability of the method while retaining
There are two distinct aspects to the sequence desiggs advantages.
problem. First, there is the issue of how to best representand \when this problem is encountered in other fields, one
calculate the compatibility of sequence and structuféis  approach is to introduce a bias in the selection of trial MC
requires a scoring function which may typically be based onmgoves whose influence can be corrected by a more elaborate
physical principle$, knowledge-based approactfes;, a spe-  acceptance criteriofRosenbluth so as to maintain detailed
cifically designed functiof.The second aspect is the searchpzjance and a Boltzmann distributi&hin this work, we
problem and is the subject of this study. Given some score Qhroduce such a scheme for protein sequence optimization.
energy function, how can the optimum sequence be found?hy analogy with configuration-biased Monte CafBMC),*
~ The number of possible sequences grows very rapidlyne amino acid composition can be changed for several sites,
with protein size (2U), but only a small number of these gy ided by the local energy surface, and followed by applica-
will be compatible with the structure of interest. The choiceion of the Rosenbluth acceptance criterion. BMC has been
of search algorithm will depend on the computer time avail-yseq previously in sequence design studies to efficiently gen-

able and the type of answer desired. Sequence optimizatiqfyate decoy structuréd,but not to actually optimize se-
is normally considered a discrete problem and this SUggeSEijences.

certain optimization methods such as Monte C&KtC)*"8 The method has been tested on a very simple two-
or genetic algorithm8” From the brute force point of view, gimensional lattice model system which could be a protein or
a pruning algorithm known as the dead end elimination Prunpolymer. Calculations were run on systems of varying size
ing algorithmt® has also been used to design a small prcﬁein.and complexity(number of monomer typgsFor compari-
son, we have also implemented an SCMF method and con-
3E|ectronic mail: Andrew.Torda@anu.edu.au ventional MC.
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II. MATERIALS AND METHODS was selected for replacement, where the optimum valié of
A. The model is system dependent and empirically determined. Fonrtihe

site, I, the Boltzmann weight of each amino acid type is
Compact proteins are represented as a self-avoidingiven by

walk of monomers on a fully occupied square, two-
dimensional lattice. The sequence consists of the set of
amino acids{o;} wherei is the position of the amino acid
along the length of the chain. Each structure consists of a s ) . _
of positions{r,}, where eachr; is assigned to the monomer The energyE is _cz_ilculated for th_e repl_aced re5|du_e in the
;. The positions(r,} are defined so that the distance be-f1€!d Of the remaining sequence, including the previously se-
tween consecutive monomers is one unit of the lattice an{fCt€d amino acidsi.e., amino acids in the trial positiong
that no more than one monomer can exist at any one sitd® lm:D' The Bolt_;mann constarh:tw.a_s set to 1 for .aII cal_—
The structures surveyed were of lendti= 16, 36, and 64 culatlong. At positiorl,,,, the probability of each amino acid
monomers. For each length, 20 compact structures were gef’y-pe o1, 1S then calculated from
erated randomly on ¥4, 6X6, and 8<8 lattices, respec-
tively (shown in additional materit). Each structure within
each set of 20 structures was unique and not related to any
other within that set by rotational or translational symmetry.
The most common protein lattice representation may be At each site, an amino acid was chosen randomly, but
the HP modef®?2where each monomer is either hydropho- according to the probabiliﬂj‘ﬁm,gI so as to introduce a bias
bic (H) or polar (P). Initial calculations suggested that a tg moves more likely to be accempted.

slightly more complicated model would better highlight the  Therefore, the probability of generation of the trial se-
differences between methods. For this reason, 8 or 20 typegence segment is given by

of amino acids were used and monomers interacted with
empty lattice sites. For convenience, this could be labeled a
solvation, burial, or contact term, but since we are concerned
with search methods, the physical interpretation is not rel-
evant.

The energy(scorg was given by

NN N

— contac contactnumber

Esequencs™ 2 Z E(ri,aj%(fi,erE Eq 5 :
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The selection criterion, which corrects for the bias intro-
duced in the sampling of sequences, compares the Rosen-
bluth weights of the trial and the original sequence. The
Rosenbluth weight is given by

M 1 n

(1) w=[] - > B g (5
whereEf,‘i",‘féj‘thas the energy of contact between amino acid meb e
typeso; and oj. The switching functiomA(r;,rj)=1 if r;
andr; were adjacent in the structure, buandj not adjacent

. . t ber . L.
in sequence, and 0 otherwisE; "™ is similar to a Wiial
i =

burial term used in many scoring functiofi* &, is an in- Woriginal’

dex set to Oburied if a site had zero or one empty adjacent whereé is a random number distributed uniformly between 0

lattice sites and set to (Exposed otherwise.o; and &, were and 1.

- ¢ b
then used as indices to extract an enegy's~ """ from
[ |

the interaction matrix.
Given n amino acid/monomer types, thZEfT‘i”jffIC‘ 2. Self-consistent mean field

contacthumber
+2nE; "¢

s interaction parameters were taken froma  The energ;Ei,Ui of an amino acid of type; at sequence
I |

Gaussian distribution with an arbitrary mean and standar@ositioni in the weighted average field of all amino acids at
deviation of 0 and 1, respectively. This has the interestingdll other positions in the structure is given by

property of giving asymmetric interactions Ef;?'fff}"t NN

#Eg"e"), but has been proposed as a model for random  E; ,,= 2 > ECoMach(r, ,r]-)PJF’"g,JrEZ?'?;?CInumber 7)
protejin sequencésand apparently mimics real protein inter- =t ] o

The criterion to be met for the acceptance of the newly
generated sequence is

(6

]

action statisticg® where Pf’"f’,j is the probability of the amino acid type;
occupying the position from the calculation prior to the

B. Optimization schemes current calculation. The Boltzmann weight of an amino acid
type o; at positioni is then given by

1. Biased Monte Carlo (BMC)

The BMC scheme used was based on configuration- o ew ' . _
biased Monte Carld! but using monomer type as the vari- The probability Pi’>" of the amino acid typer; occupying
able rather than configuration. A set bf random siteq!} the positioni in the structure is then given by

B, =e Gia/D. (8
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pew_ D14 © > 3 (PP P)2INn=10"", (12
1,0 23:1Bi’q' I [on .
new 0 A _
The probability matrixP™®" calculated from the previous vv.herePi’Ui andPy;, were the new and old probability ma
trices, N the number of monomer, and the number of

matrix then gives the probability of occupation of each type
of amino acid at each site in the protein. In the first step, thdONOMer types as above. _ _

values for the probability matrix are taken randomly from Given the pmbab'“t'e@iﬂi of each amino acid type;
a uniform distribution and then normalized so that theat positioni, the sequence entroiy at positioni is defined
probabilities of each amino acid occurring at a given siteby

sum to 1. n
In order to suppress oscillations from the SCMF proce- S = Z Pi,InP;,. (13
dure, the new probability matrie"" has a weighted contri- o=1 o
bution from the previous probability matriR® so that the
new matrixPene.;is given by 1. RESULTS
pgg;’rvect:)\pold+(1_)\)pneW_ (10) The first calculations compared convergence properties

) ) of BMC, SCMF, and classic MC.
A was set to a literature valffeof 0.5, but also to 0.1 in

some calculations as described in Sec. lIl. A. Dependence of MC and BMC algorithm on step
Size
BMC involves changing a whole segment of sequence as
part of one trial move, but the size of the segment is not
For both MC/simulated annealing and SCMF calcula-known in advance. Tests were performed with one, two,
tions, the system was cooled by an exponential schemtur, six, eight, or ten sites changed per trial. The results are
where the temperaturE at timet is given by shown in Fig. 1a) for the largest system studi€@4-mej
T(t)=Tye~ 0 (11) with the mediL_Jm cooling rate. For the 20 compact structures
0 ' tested, changing more than four sites per trial did not im-
whereT, is the temperature d=0 andc is a constant dic- prove convergence speed, so this was used in subsequent
tating the rate of cooling. Timewas taken as the processor calculations. Runs on smaller systems or different cooling
time (proportional to the number of energy function evalua-rates showed the same trends. This result is almost certainly
tions) to enable direct comparison between the MC, BMC,a reflection of the lattice model and the fact that monomers
and SCMF minimization algorithms. can never have more than three interacting neighbors.
The initial temperature was always setTg=1000 so It could be that conventionalunbiasedl Monte Carlo
that all sequences would be thermally accessible as the probrould also benefit from moves that consist of more than one
abilities of least and most likely are within a few percent of simultaneous change. This was tested by using moves that
each other. The cooling rates were labeled fast.05), consisted of randomly changing more than one site before
medium €=0.1), and slow ¢=1.0). All minimization runs  calculating the conventional Metropolis acceptance criterion.
were terminated af =10 °. Since the difference in energy Figure Xb) suggests that there is no advantage in changing
between the lowest states is of the order of 1@nergy more than one site at a time. Apparently, without any bias,
units, this means that the calculations were stopped well afteany benefit from larger step sizes is outweighed by an in-
the system was effectively frozen. creased rejection rate. All subsequent applications of the MC
For each structure, 20 independent minimization runsalgorithm changed only one amino acid per optimization
were conducted from a random starting sequence and thstep.
average and standard deviation of the energy over these runs
was calculated every 0.01 time unit.

3. Annealing schedule

B. Comparison of optimization methods

Sequence optimizations were conducted on structures of
16, 36, and 64 monomers using 20 maximally compact struc-
tures in each case and with three different cooling rates. In
Sequence entropies were calculated only on example 16=ig. 2 (and subsequent Figs. 3, 5, 6, and Fanels(a), (b),
mer structures using constant temperature runs for both M@nd(c) represent the results of fast, medium, and slow cool-
(step size of L and SCMF. In these calculation=0.2, ing, respectively.
which was approximately the temperature at which the slow- Considering the smallest structuré&6-meyp, Fig. 2
est optimization runs just converged. In MC, sufficient stepsshows the average of minimizations with 20 different struc-
were taken to sample 10° sequences and probabilities sim- tures. For each rate of cooling, the SCMF algorithm clearly
ply taken from the observed distributions. For the SCMFconverged to a low energy faster than either the MC or BMC
algorithm, the calculation was conducted as described previmethods, but there was little difference between the MC and
ously (see Sec. II B 2except that the temperature was heldBMC methods. All methods converged to sequences with
constant until the probability matrix converged. The conver-almost identical energies by the time the temperature cooled
gence condition is given by to T=10° for each rate of coolingdata not shown Re-

C. Sequence entropies
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FIG. 1. Dependence of Monte Carlo optimization on move size. Trial moves time
consisted of one, two, four, or ten simultaneous residue changes as labele
for (a) BMC, and (b) MC. The structure was the first 64-mer listed in T
additional material and the cooling rate useais0.1. ©
C
— MC
. . . -——- BMC
peating the calculations for all of the 16-mer structures listed —-—-- SCMF
in Ref. 19 gave similar result&lata not shown Repeating 3
the calculations for 36-mers suggested a difference betwee 2 1
MC and BMC methods, but it was within statistical error.
For the larger 64-mer structures, the optimization speed:s
were, however, quite distinct. The calculations were done for i
all the structures listed in Ref. 19, but for clarity, Fig. 3
shows the results from the first structure as it was typical of
all cases. The SCMF method minimizes fastest for all three _3g .
0.0 10.0 20.0

cooling rates. For MC and BMC, there is a more interesting
result. If cooling is slow enoughFig. 3(c)], there is little
difference. With faster coolingFig. 3@], BMC is much  FIG. 2. Optimization of 16-mer. The average of 20 independent sequence
more efficient. energy minimizations is shown for MC, BMC, and SCMF for cooling rates

The example plots do not give any indication as to thet= (a)_ Q.05,(b) 0.1_, and(c) 1. The structure used is the first 16-mer listed
.. - . . in additional materialRef. 19.
statistical significance of the differences in convergence
rates. One quick measure is to consider the standard devia-
tions among the different calculations. Figure 4 shows the
same runs as Fig.(8) (16-mep and Fig. 3b) (64-me), but Based on the results so far, it would appear that SCMF is
with error bars indicating the standard deviations among theimply superior to Monte Carlo of any kind. While it is true
energies. For the 16-mer, any difference between MC anthat the convergence rate is much faster, there is a severe
BMC is not significant. For the larger 64-mer with medium problem. SCMF does not always find solutions of energy as
or fast cooling rates, the difference between methods is muclow as the Monte Carlo methods. This is shown in Fig. 5,
larger than the spread of results. where final energies are plotted for each 64-mer for the three

time
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FIG. 4. Energy scatter during optimizatio@) corresponds to Fig.(B) and
50 (b) to Fig. 3b) except both have standard deviations of energies given as
© error bars.
— MC
ol ---- BMC ] interaction energy parameter was 0.7 units, which is of simi-
----- SCMF : - g, :
- lar size to the difference in final energies between the two
g best methods. Although it is only an average value, it could
] be said that there is typically one better interaction in the
_50 il BMC optimized sequences. While the BMC runs with the
slowest cooling produce the best results, there is no proof
that the results are the optimal solutions or that the system
was in equilibrium in all calculations. Most importantly, dif-
_100 , ferent runs do not converge to the same solution. Apparently
0.0 10.0 20.0 the cooling rate is in a regime where it will produce results
time that are better than SCMF, but still not perfect.

FIG. 3. Optimization of 64-mer. The average of 20 independent sequence

energy minimizations is shown for MC, BMC, and SCMF for cooling rates . .
c= (a) 0.05,(b) 0.1, and(c) 1. The structure used is the first 64-mer listed C. Dependence on number of amino acids and SCMF

in additional materialRef. 19. damping factor

All the calculations described above used eight amino

acid types, but it is interesting to see if the results change
rates of cooling and for the three different methods. Unlessvhen the system is made much more complex. For this rea-
the cooling rate is very slo\Fig. 5(c)], classic MC does not son, a few calculations were done with 20 amino acid/
find a good solution. For the middle cooling rgfgg. 5(b)], monomer types. This increases the size of the search space,
BMC usually finds a better solution than SCMF, but theso it becomes difficult for any method to approach the global
differences may not be significant compared with the stanminimum.
dard deviations. For the slowest cooling rdféig. 5(c)], Figure 6 shows the results for three cooling rates for the
BMC always finds a significantly better result than SCMF.first 64-mer structure listed in additioh@material with each
This can be interpreted in terms of final sequences. The meanethod. For the slowest cooling rafé¢sg. 6(c)], the results
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FIG. 6. Sequence optimization of 64-mer with 20 amino acid types. Labels

and symbols as per Fig. 2.

FIG. 5. Final energies for 64-mer structures with eight monomer types. The
average and standard deviations of final energies are shown for each struc-

?6r SCMF. There are parts of the calculation where the en-
ergy value seems to plateau. This led to the question as to
whether the parameters were best adapted to the system. In
are not surprising, suggesting that SCMF finds a solutiorfact, SCMF does contain one very arbitrary parameterjithe

ture. Structure number corresponds to the order structures are listed in a

ditional material. Cooling rates ae= (a) 0.05,(b) 0.1 and(c) 1.

most rapidly. For the faster cooling ratfiSig. 6(@)], how-

(damping value given in Eq(10).

It is essential thak be

ever, there is a different result. For these cooling speedgositive and nonzero to prevent oscillations. The valua of
BMC reaches a very good solution faster than SCMF. This=0.5, however, was simply taken from the literature. The
was not seen in the previous calculations with eight monoealculations with 20 amino acid types were then repeated,

mer types.

but after setting.=0.1; the results

are shown in Fig. 7. With

These results, however, show more interesting behaviahis value ofA, SCMF generally appears to be faster con-
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FIG. 7. Effect ofA on SCMF optimization. Labels and symbols as per Fig.
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verging and no oscillations in the probability matrix were
observed. These results highlight the fact that parameter s
tings can often be set arbitrarily and will affect any compari-

son of methods.

IV. DISCUSSION

10.0
time

20.0
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ing the same statistical mechanical properties. This may not
be surprising given the success of analogous methods such as
configuration-biased Monte Carté.Furthermore, it appears
that this is simply due to the difference in the sampling/
acceptance method. Even when a classic Monte Carlo step
involved changing more than one residue at a time, MC was
not a competitive approach.

Beyond this clear difference, the method of choice de-
pends on the system and the goals. If a sampling of se-
quences with a knowi@Boltzmann distribution is wanted,
BMC may be the only useful method. It does, however, usu-
ally perform more slowly than SCMF. SCMF, however, has
the distinct disadvantage that the answers, which are quickly
produced, are not always corréittis not guaranteed to con-
verge to the correct sequenc®f course, in this study, se-
quences were optimized with relatively rapid cooling sched-
ules and it remains possible that SCMF would find the
correct sequence for these systems given a slower cooling
regime. In practice, applying SCMF with rapid cooling may
not be a problem since the quality of the results was never far
from BMC and the error due to lack of convergence may be
smaller than the error due to force field/score function ap-
proximations. SCMF also has a less obvious disadvantage.
Any fast implementation relies on a large matrix of stored
interactions. Withn monomer types and structures of length
N, this grows withn?N?.

The work here has not dwelt on the calculation of se-
guence entropies or sequence information corjtegi(13)].

Its physical meaning is debatable, but it may be seen as a
measure of how much a particular site is allowed to vary. It
is readily accessible from the distributions in an equilibrium
BMC simulation or the probability matrix of an SCMF cal-
culation. For the calculation of sequence entropy, similar
considerations apply as to a minimization. This measure is a
property of the neighborhood being sampled. If it is the
wrong neighborhood, the results may suffer correspondingly.
Figure 8 gives examples of sequence entropies derived from
MC and SCMF simulations. Each diagram shows a structure
and at each site, the bars show the sequence entropy calcu-
lated by each method. In Fig(a, there is good agreement,
but Fig. 8b) shows an example where SCMF converged to a
worse sequence. In this case, the larger/smaller bars show
where it has over-underestimated the sequence entropy.

After using a simple model system, the question of trans-
ferability to more realistic systems is always posed. Obvi-
ously, no specific parameters would be transferable to a more
complicated protein-like system with continuou®nlattice
coordinates, 20 amino acid types, and more intricate interac-
tion functions. It is also clear that this kind of approach is

el?_est suited to coarse-grained, low-resolutioonatomisti¢

models. Possibly the most drastic change with a more real-
istic protein would be the number of sites changed per trial
move. In a real protein, each site has many more neighbors
and longer range interactions. Aside from specific param-
eters, some trends would certainly be transferable to a more

Classic Monte Carlo has a history of application to se-realistic protein model. The advantages of biased Monte
quence optimizatioft! but there appears to be no reason toCarlo moves over simple MC are clear. The potential disad-
use it. The biased Monte Carlo method introduced here isantages of SCMF are also clear. The possibility of conver-
consistently and reproducibly more efficient while maintain-gence to an incorrect minimum will only increase as systems
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(a) on methods that are purely optimization tools such as the
S i ¥ %_}_ _____ 3% dead end elimination algorithm and genetic algorithm. If en-
i semble properties are not of interest, these may be appropri-
i ate devices.
ol
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