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Biased Monte Carlo optimization of protein sequences
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We demonstrate the application of a biased Monte Carlo method for the optimization of protein
sequences. The concept of configurational-biased Monte Carlo has been used, but applied to
sequence/composition rather than coordinates. Sequences of two-dimensional lattice proteins were
optimized with the new approach and results compared with conventional Monte Carlo and a
self-consistent mean-field~SCMF! method. Biased Monte Carlo~MC! was far more efficient than
conventional MC, especially on more complex systems and with faster cooling rates. Biased MC did
not converge as quickly as SCMF, but often found better sequences. ©2000 American Institute of
Physics.@S0021-9606~00!51030-7#
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I. INTRODUCTION

If the amino acid sequence of a protein is written dow
there is a very good chance a molecular biologist can p
duce it in useful quantities. Unfortunately, the ability to d
sign a ‘‘better’’ amino acid sequence lags behind the exp
mental capability to produce it.1 It remains remarkably
difficult to find an approximation to an ideal protein s
quence and it is only recently that there have been exam
of large-scale protein redesign where one takes a given s
ture and attempts to find a sequence that will be more sta2

The practical applications are clear. It would often be use
to take a native protein and change the amino acid sequ
to make it more heat stable or perhaps change it in part s
to accommodate some chemical modification.

There are two distinct aspects to the sequence de
problem. First, there is the issue of how to best represent
calculate the compatibility of sequence and structure.3 This
requires a scoring function which may typically be based
physical principles,4 knowledge-based approaches,5 or a spe-
cifically designed function.6 The second aspect is the sear
problem and is the subject of this study. Given some scor
energy function, how can the optimum sequence be foun

The number of possible sequences grows very rap
with protein size (20N), but only a small number of thes
will be compatible with the structure of interest. The choi
of search algorithm will depend on the computer time av
able and the type of answer desired. Sequence optimiza
is normally considered a discrete problem and this sugg
certain optimization methods such as Monte Carlo~MC!4,7,8

or genetic algorithms.5,9 From the brute force point of view
a pruning algorithm known as the dead end elimination pr
ing algorithm10 has also been used to design a small prote2

a!Electronic mail: Andrew.Torda@anu.edu.au
2480021-9606/2000/113(6)/2489/8/$17.00
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Recently, in an effort to try and avoid problems associa
with large energy barriers and rugged search spaces, m
field approaches have been receiving some interest.11 This
may be seen as an approach which by-passes the dis
nature of the problem~sites have partial amino acid chara
ter! and may also be promising for protein sequen
optimization.12–15

MC has several attractive properties in principle, w
practical disadvantages. With infinite computer time a
slow cooling ~simulated annealing! it will find the lowest
energy sequence. It also has the desirable property tha
finite temperature, it does not offer just one solution, but
ensemble of solutions with a known~Boltzmann! distribu-
tion. Since computer time is finite, it would be desirable
improve the sampling ability of the method while retainin
its advantages.

When this problem is encountered in other fields, o
approach is to introduce a bias in the selection of trial M
moves whose influence can be corrected by a more elabo
acceptance criterion~Rosenbluth! so as to maintain detailed
balance and a Boltzmann distribution.16 In this work, we
introduce such a scheme for protein sequence optimizat
By analogy with configuration-biased Monte Carlo~BMC!,17

the amino acid composition can be changed for several s
guided by the local energy surface, and followed by appli
tion of the Rosenbluth acceptance criterion. BMC has b
used previously in sequence design studies to efficiently g
erate decoy structures,18 but not to actually optimize se
quences.

The method has been tested on a very simple tw
dimensional lattice model system which could be a protein
polymer. Calculations were run on systems of varying s
and complexity~number of monomer types!. For compari-
son, we have also implemented an SCMF method and c
ventional MC.
9 © 2000 American Institute of Physics



in
o-
t

s
r
e
an
si

ge

a
ry
b

o-
a

he
p
i

d
ne
re

ci

nt

a

a
in

o

r-

ion
i-

f

is

he
se-

but
s

e-

o-
sen-
he

ly

0

at

cid

2490 J. Chem. Phys., Vol. 113, No. 6, 8 August 2000 Cootes, Curmi, and Torda
II. MATERIALS AND METHODS

A. The model

Compact proteins are represented as a self-avoid
walk of monomers on a fully occupied square, tw
dimensional lattice. The sequence consists of the se
amino acids$s i% where i is the position of the amino acid
along the length of the chain. Each structure consists of a
of positions$r i%, where eachr i is assigned to the monome
s i . The positions$r i% are defined so that the distance b
tween consecutive monomers is one unit of the lattice
that no more than one monomer can exist at any one
The structures surveyed were of lengthN516, 36, and 64
monomers. For each length, 20 compact structures were
erated randomly on 434, 636, and 838 lattices, respec-
tively ~shown in additional material19!. Each structure within
each set of 20 structures was unique and not related to
other within that set by rotational or translational symmet

The most common protein lattice representation may
the HP model,20–22where each monomer is either hydroph
bic ~H! or polar ~P!. Initial calculations suggested that
slightly more complicated model would better highlight t
differences between methods. For this reason, 8 or 20 ty
of amino acids were used and monomers interacted w
empty lattice sites. For convenience, this could be labele
solvation, burial, or contact term, but since we are concer
with search methods, the physical interpretation is not
evant.

The energy~score! was given by

Esequence5(
i

N

(
j . i

N

Es i ,s j

contactD~r i ,r j !1(
i

N

Es i ,d i

contact-number,

~1!

whereEs i ,d j

contactwas the energy of contact between amino a

typess i and s j . The switching functionD(r i ,r j )51 if r i

andr j were adjacent in the structure, buti andj not adjacent
in sequence, and 0 otherwise.Es i ,d i

contact-number is similar to a

burial term used in many scoring functions.23,24 d i is an in-
dex set to 0~buried! if a site had zero or one empty adjace
lattice sites and set to 1~exposed! otherwise.s i andd i were
then used as indices to extract an energyEs i ,d i

contact-number from

the interaction matrix.
Given n amino acid/monomer types, alln2Es i ,s j

contact

12nEs i ,d i

contact-number interaction parameters were taken from

Gaussian distribution with an arbitrary mean and stand
deviation of 0 and 1, respectively. This has the interest
property of giving asymmetric interactions (Es i ,s j

contact

ÞEs j ,s i

contact), but has been proposed as a model for rand

protein sequences25 and apparently mimics real protein inte
action statistics.26

B. Optimization schemes

1. Biased Monte Carlo (BMC)

The BMC scheme used was based on configurat
biased Monte Carlo,17 but using monomer type as the var
able rather than configuration. A set ofM random sites$ l %
g
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was selected for replacement, where the optimum value oM
is system dependent and empirically determined. For themth
site, l m , the Boltzmann weight of each amino acid type
given by

Bl m ,s l m
5e2(El m ,s lm

/kT), ~2!

wheres l m
refers to the residue type being placed at sitel m .

The energyE is calculated for the replaced residue in t
field of the remaining sequence, including the previously
lected amino acids~i.e., amino acids in the trial positionsl 1

to l m-1). The Boltzmann constantk was set to 1 for all cal-
culations. At positionl m , the probability of each amino acid
type s l m

is then calculated from

Pl m ,s l m
5

Bl m ,s l m

(q51
n Bl m ,q

. ~3!

At each site, an amino acid was chosen randomly,
according to the probabilityPl m ,s l m

so as to introduce a bia

to moves more likely to be accepted.
Therefore, the probability of generation of the trial s

quence segment is given by

P5 )
m51

M

Pl m ,s l m
. ~4!

The selection criterion, which corrects for the bias intr
duced in the sampling of sequences, compares the Ro
bluth weights of the trial and the original sequence. T
Rosenbluth weight is given by

W5 )
m51

M
1

n (
q51

n

Bl m ,q . ~5!

The criterion to be met for the acceptance of the new
generated sequence is

j<
Wtrial

Woriginal
, ~6!

wherej is a random number distributed uniformly between
and 1.

2. Self-consistent mean field

The energyEi ,s i
of an amino acid of types i at sequence

position i in the weighted average field of all amino acids
all other positions in the structure is given by

Ei ,s i
5 (

s j 51

n

(
j Þ i

N

Es i ,s j

contactD~r i ,r j !Pj ,s j

old 1Es i ,d i

contact-number
~7!

where Pj ,s j

old is the probability of the amino acid types j

occupying the positionj from the calculation prior to the
current calculation. The Boltzmann weight of an amino a
type s i at positioni is then given by

Bi ,s i
5e2(Ei ,s i

/T). ~8!

The probabilityPi ,s i

new of the amino acid types i occupying

the positioni in the structure is then given by
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Pi ,s i

new5
Bi ,s i

(q51
n Bi ,q

. ~9!

The probability matrixPnew calculated from the previou
matrix then gives the probability of occupation of each ty
of amino acid at each site in the protein. In the first step,
values for the probability matrix are taken randomly fro
a uniform distribution and then normalized so that t
probabilities of each amino acid occurring at a given s
sum to 1.

In order to suppress oscillations from the SCMF pro
dure, the new probability matrixPnew has a weighted contri
bution from the previous probability matrixPold so that the
new matrixPcorrect

new is given by

Pcorrect
new 5lPold1~12l!Pnew. ~10!

l was set to a literature value27 of 0.5, but also to 0.1 in
some calculations as described in Sec. III.

3. Annealing schedule

For both MC/simulated annealing and SCMF calcu
tions, the system was cooled by an exponential sche
where the temperatureT at time t is given by

T~ t !5T0e2(t/c), ~11!

whereT0 is the temperature att50 andc is a constant dic-
tating the rate of cooling. Timet was taken as the process
time ~proportional to the number of energy function evalu
tions! to enable direct comparison between the MC, BM
and SCMF minimization algorithms.

The initial temperature was always set toT051000 so
that all sequences would be thermally accessible as the p
abilities of least and most likely are within a few percent
each other. The cooling rates were labeled fast (c50.05),
medium (c50.1), and slow (c51.0). All minimization runs
were terminated atT51026. Since the difference in energ
between the lowest states is of the order of 1021 energy
units, this means that the calculations were stopped well a
the system was effectively frozen.

For each structure, 20 independent minimization ru
were conducted from a random starting sequence and
average and standard deviation of the energy over these
was calculated every 0.01 time unit.

C. Sequence entropies

Sequence entropies were calculated only on example
mer structures using constant temperature runs for both
~step size of 1! and SCMF. In these calculationsT50.2,
which was approximately the temperature at which the slo
est optimization runs just converged. In MC, sufficient ste
were taken to sample;106 sequences and probabilities sim
ply taken from the observed distributions. For the SCM
algorithm, the calculation was conducted as described pr
ously ~see Sec. II B 2! except that the temperature was he
constant until the probability matrix converged. The conv
gence condition is given by
e

e

-

-
e

-
,

b-
f

er

s
he
ns

6-
C

-
s

i-

-

(
i

(
s i

~Pi ,s i

new2Pi ,s i

old !2/Nn<1029, ~12!

wherePi ,s i

new and Pi ,s i

old were the new and old probability ma

trices, N the number of monomer, andn the number of
monomer types as above.

Given the probabilitiesPi ,s i
of each amino acid types i

at positioni, the sequence entropySi at positioni is defined
by

Si5 (
s i51

n

Pi ,s i
ln Pi ,s i

. ~13!

III. RESULTS

The first calculations compared convergence proper
of BMC, SCMF, and classic MC.

A. Dependence of MC and BMC algorithm on step
size

BMC involves changing a whole segment of sequence
part of one trial move, but the size of the segment is
known in advance. Tests were performed with one, tw
four, six, eight, or ten sites changed per trial. The results
shown in Fig. 1~a! for the largest system studied~64-mer!
with the medium cooling rate. For the 20 compact structu
tested, changing more than four sites per trial did not i
prove convergence speed, so this was used in subseq
calculations. Runs on smaller systems or different cool
rates showed the same trends. This result is almost certa
a reflection of the lattice model and the fact that monom
can never have more than three interacting neighbors.

It could be that conventional~unbiased! Monte Carlo
would also benefit from moves that consist of more than o
simultaneous change. This was tested by using moves
consisted of randomly changing more than one site be
calculating the conventional Metropolis acceptance criteri
Figure 1~b! suggests that there is no advantage in chang
more than one site at a time. Apparently, without any bi
any benefit from larger step sizes is outweighed by an
creased rejection rate. All subsequent applications of the
algorithm changed only one amino acid per optimizati
step.

B. Comparison of optimization methods

Sequence optimizations were conducted on structure
16, 36, and 64 monomers using 20 maximally compact str
tures in each case and with three different cooling rates
Fig. 2 ~and subsequent Figs. 3, 5, 6, and 7!, panels~a!, ~b!,
and~c! represent the results of fast, medium, and slow co
ing, respectively.

Considering the smallest structures~16-mer!, Fig. 2
shows the average of minimizations with 20 different stru
tures. For each rate of cooling, the SCMF algorithm clea
converged to a low energy faster than either the MC or BM
methods, but there was little difference between the MC a
BMC methods. All methods converged to sequences w
almost identical energies by the time the temperature coo
to T51026 for each rate of cooling~data not shown!. Re-
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peating the calculations for all of the 16-mer structures lis
in Ref. 19 gave similar results~data not shown!. Repeating
the calculations for 36-mers suggested a difference betw
MC and BMC methods, but it was within statistical error.

For the larger 64-mer structures, the optimization spe
were, however, quite distinct. The calculations were done
all the structures listed in Ref. 19, but for clarity, Fig.
shows the results from the first structure as it was typica
all cases. The SCMF method minimizes fastest for all th
cooling rates. For MC and BMC, there is a more interest
result. If cooling is slow enough@Fig. 3~c!#, there is little
difference. With faster cooling@Fig. 3~a!#, BMC is much
more efficient.

The example plots do not give any indication as to
statistical significance of the differences in convergen
rates. One quick measure is to consider the standard de
tions among the different calculations. Figure 4 shows
same runs as Fig. 2~b! ~16-mer! and Fig. 3~b! ~64-mer!, but
with error bars indicating the standard deviations among
energies. For the 16-mer, any difference between MC
BMC is not significant. For the larger 64-mer with mediu
or fast cooling rates, the difference between methods is m
larger than the spread of results.

FIG. 1. Dependence of Monte Carlo optimization on move size. Trial mo
consisted of one, two, four, or ten simultaneous residue changes as la
for ~a! BMC, and ~b! MC. The structure was the first 64-mer listed
additional material and the cooling rate used isc50.1.
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Based on the results so far, it would appear that SCM
simply superior to Monte Carlo of any kind. While it is tru
that the convergence rate is much faster, there is a se
problem. SCMF does not always find solutions of energy
low as the Monte Carlo methods. This is shown in Fig.
where final energies are plotted for each 64-mer for the th

s
led

FIG. 2. Optimization of 16-mer. The average of 20 independent seque
energy minimizations is shown for MC, BMC, and SCMF for cooling rat
c5 ~a! 0.05,~b! 0.1, and~c! 1. The structure used is the first 16-mer liste
in additional material~Ref. 19!.
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rates of cooling and for the three different methods. Unl
the cooling rate is very slow@Fig. 5~c!#, classic MC does no
find a good solution. For the middle cooling rate@Fig. 5~b!#,
BMC usually finds a better solution than SCMF, but t
differences may not be significant compared with the st
dard deviations. For the slowest cooling rate@Fig. 5~c!#,
BMC always finds a significantly better result than SCM
This can be interpreted in terms of final sequences. The m

FIG. 3. Optimization of 64-mer. The average of 20 independent sequ
energy minimizations is shown for MC, BMC, and SCMF for cooling rat
c5 ~a! 0.05,~b! 0.1, and~c! 1. The structure used is the first 64-mer liste
in additional material~Ref. 19!.
s

-

.
an

interaction energy parameter was 0.7 units, which is of si
lar size to the difference in final energies between the t
best methods. Although it is only an average value, it co
be said that there is typically one better interaction in
BMC optimized sequences. While the BMC runs with t
slowest cooling produce the best results, there is no pr
that the results are the optimal solutions or that the sys
was in equilibrium in all calculations. Most importantly, di
ferent runs do not converge to the same solution. Appare
the cooling rate is in a regime where it will produce resu
that are better than SCMF, but still not perfect.

C. Dependence on number of amino acids and SCMF
damping factor

All the calculations described above used eight am
acid types, but it is interesting to see if the results chan
when the system is made much more complex. For this
son, a few calculations were done with 20 amino ac
monomer types. This increases the size of the search sp
so it becomes difficult for any method to approach the glo
minimum.

Figure 6 shows the results for three cooling rates for
first 64-mer structure listed in additional19 material with each
method. For the slowest cooling rates@Fig. 6~c!#, the results

ce

FIG. 4. Energy scatter during optimization.~a! corresponds to Fig. 2~b! and
~b! to Fig. 3~b! except both have standard deviations of energies given
error bars.
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are not surprising, suggesting that SCMF finds a solut
most rapidly. For the faster cooling rates@Fig. 6~a!#, how-
ever, there is a different result. For these cooling spee
BMC reaches a very good solution faster than SCMF. T
was not seen in the previous calculations with eight mo
mer types.

These results, however, show more interesting beha

FIG. 5. Final energies for 64-mer structures with eight monomer types.
average and standard deviations of final energies are shown for each
ture. Structure number corresponds to the order structures are listed i
ditional material. Cooling rates arec5 ~a! 0.05, ~b! 0.1 and~c! 1.
n

s,
is
-

or

for SCMF. There are parts of the calculation where the
ergy value seems to plateau. This led to the question a
whether the parameters were best adapted to the system
fact, SCMF does contain one very arbitrary parameter, thl
~damping! value given in Eq.~10!. It is essential thatl be
positive and nonzero to prevent oscillations. The value ol
50.5, however, was simply taken from the literature. T
calculations with 20 amino acid types were then repea
but after settingl50.1; the results are shown in Fig. 7. Wit
this value ofl, SCMF generally appears to be faster co

e
uc-
ad-

FIG. 6. Sequence optimization of 64-mer with 20 amino acid types. Lab
and symbols as per Fig. 2.
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verging and no oscillations in the probability matrix we
observed. These results highlight the fact that parameter
tings can often be set arbitrarily and will affect any compa
son of methods.

IV. DISCUSSION

Classic Monte Carlo has a history of application to s
quence optimization,4,7 but there appears to be no reason
use it. The biased Monte Carlo method introduced her
consistently and reproducibly more efficient while mainta

FIG. 7. Effect ofl on SCMF optimization. Labels and symbols as per F
6, but withl50.1.
et-
-

-

is
-

ing the same statistical mechanical properties. This may
be surprising given the success of analogous methods su
configuration-biased Monte Carlo.17 Furthermore, it appears
that this is simply due to the difference in the samplin
acceptance method. Even when a classic Monte Carlo
involved changing more than one residue at a time, MC w
not a competitive approach.

Beyond this clear difference, the method of choice d
pends on the system and the goals. If a sampling of
quences with a known~Boltzmann! distribution is wanted,
BMC may be the only useful method. It does, however, u
ally perform more slowly than SCMF. SCMF, however, h
the distinct disadvantage that the answers, which are qui
produced, are not always correct~it is not guaranteed to con
verge to the correct sequence!. Of course, in this study, se
quences were optimized with relatively rapid cooling sche
ules and it remains possible that SCMF would find t
correct sequence for these systems given a slower coo
regime. In practice, applying SCMF with rapid cooling ma
not be a problem since the quality of the results was never
from BMC and the error due to lack of convergence may
smaller than the error due to force field/score function
proximations. SCMF also has a less obvious disadvant
Any fast implementation relies on a large matrix of stor
interactions. Withn monomer types and structures of leng
N, this grows withn2N2.

The work here has not dwelt on the calculation of s
quence entropies or sequence information content@Eq. ~13!#.
Its physical meaning is debatable, but it may be seen a
measure of how much a particular site is allowed to vary
is readily accessible from the distributions in an equilibriu
BMC simulation or the probability matrix of an SCMF ca
culation. For the calculation of sequence entropy, sim
considerations apply as to a minimization. This measure
property of the neighborhood being sampled. If it is t
wrong neighborhood, the results may suffer correspondin
Figure 8 gives examples of sequence entropies derived f
MC and SCMF simulations. Each diagram shows a struct
and at each site, the bars show the sequence entropy c
lated by each method. In Fig. 8~a!, there is good agreemen
but Fig. 8~b! shows an example where SCMF converged t
worse sequence. In this case, the larger/smaller bars s
where it has over-underestimated the sequence entropy.

After using a simple model system, the question of tra
ferability to more realistic systems is always posed. Ob
ously, no specific parameters would be transferable to a m
complicated protein-like system with continuous~nonlattice!
coordinates, 20 amino acid types, and more intricate inte
tion functions. It is also clear that this kind of approach
best suited to coarse-grained, low-resolution~nonatomistic!
models. Possibly the most drastic change with a more r
istic protein would be the number of sites changed per t
move. In a real protein, each site has many more neighb
and longer range interactions. Aside from specific para
eters, some trends would certainly be transferable to a m
realistic protein model. The advantages of biased Mo
Carlo moves over simple MC are clear. The potential dis
vantages of SCMF are also clear. The possibility of conv
gence to an incorrect minimum will only increase as syste
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are made more complicated. Furthermore, results on ev
simple system highlight the importance of parameters s
as thel ~damping! parameter in SCMF and this would als
have to be tuned to any real system.

Finally, the work here has compared methods that h
well-understood distribution properties and has not touc

FIG. 8. Sequence entropies for 16-mers calculated with MC and SC
methods. Dotted lines represent the lattice structure and the error bars
resent the sequence entropy at that point in the structure. The sizes o
error bars are proportional to the value of the sequence entropy. L
entropies indicate a point with high mutability; small entropies have l
mutability. Entropy calculations were conducted atT50.2; ~a! is structure
no. 10 and~b! is structure no. 5@as listed in the additional material~Ref.
19!#.
a
h

e
d

on methods that are purely optimization tools such as
dead end elimination algorithm and genetic algorithm. If e
semble properties are not of interest, these may be appro
ate devices.
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