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Abstract 

We present a fast method for finding optimal parameters for a low-resolution (threading) force field intended to 
distinguish correct from incorrect folds  for a given protein sequence. In contrast to other methods, the parameterization 
uses information from >lo7  misfolded structures as well as a set of native sequence-structure pairs. 

In addition to testing the resulting force field’s performance on the protein sequence threading problem, results are 
shown that characterize the number of parameters necessary for effective structure recognition. 
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Currently, there is  no shortage of low-resolution, protein fold rec- 
ognition force fields (Lemer  et al., 1995;  Sippl,  1995; Bohm, 1996; 
Jernigan & Bahar, 1996; Jones & Thornton, 1996; Sippl & Flock- 
ner, 1996; Torda, 1997). These  are nearly all designed to tackle the 
threading problem, where a sequence is tested for compatibility 
with a series of structures and a pseudo-potential energy function 
is applied to find the most appropriate structure for some sequence. 

It is not known whether a protein’s fold can be explained simply 
by internal interactions or whether it  is the result of complex 
interplay with the environment and folding history. Consequently, 
the optimal fold recognition function may not need to be based on 
real physical properties. Instead, it may simply reflect some com- 
mon denominator among naturally expressed proteins (and solved 
structures). 

Originally, it was seen as an achievement for a method to be able 
to recognize a sequence’s native structure from a large number of 
wrong, decoy structures (Bowie et al., 1991; Jones et al., 1992). 
Since then, the problem of self-recognition seems to have become 
a minimal requirement (Defay & Cohen, 1996; Jones & Thornton, 
1996). With this baseline, a new force field is probably only in- 
teresting if there is evidence of remarkable performance or some 
cunning innovation. The work here may not satisfy either of these 
criteria, but it does have some interesting properties. There is  no 
reliance on Boltzmann statistics (Jones et al., 1992) nor on any 
obvious physics. Rather than merely aim for self-recognition, the 
methodology optimizes the statistical significance of such recog- 
nition. This is based on the philosophy of defining a criterion for 
force field quality and then adjusting parameters to optimize this 
property (Seetharamulu & Crippen, 1991; Maiorov & Crippen, 
1992; Hao & Scheraga, 1996; Koretke et al., 1996; Mirny & Sha- 
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khnovich, 1996; Ulrich et al., 1997). Next, the parameterization 
scheme includes the effect of structures generated by threading. 
Unlike earlier work (Ulrich  et al., 1997), a tractable scheme has 
been devised whereby one can easily handle parameterization with 
more than 300 native structures and lo7 misfolded alternative 
structures. Most importantly, the force  field functional forms were 
chosen so that one could guarantee convergence using simple 
gradient-based optimization. Finally, the method was applied to 
give some estimate of the force field’s “leaming capacity,” or the 
appropriate number of adjustable parameters. This work is also 
based on a fundamentally unusual approach to the general problem 
of protein fold recognition. The work here is intended to produce 
a force field that only applies to native-like structures and is op- 
timized for that purpose. This means that one accepts at the outset 
that it may not be the best method for sequence-structure align- 
ment calculations and should be tested only on ungapped align- 
ments. A separate and specifically optimized force field will be 
used for gapped alignments (unpubl. results). 

Theory 

Energy function 

Each amino acid was represented by five interaction sites. Four of 
these were at backbone atom positions (N, C“, C, and 0) and  one 
at the position of the Cp carbon. For glycine residues, an inter- 
action site was positioned at the location of a fictitious Cp atom 
calculated assuming ideal geometry. The total energy of a chain of 
length N was the sum of pairwise interactions between all atoms 
and a solvent/environment energy of each residue based only on 
the C” atom position: 

SN SN N 

E,,, = x C. ~ , A i J  + C. E.yc>l(k), 
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where i and j are  indices running over the five interaction sites in 
each residue and k runs over the set of C* atoms. 

The pair interaction energy E ( i , j )  between two atoms i and j 
depended on spatial distance dij, topological distance sij in the 
amino acid sequence,  and  the atom types ti and $. A simple sig- 
moidal function was  chosen to describe atom pair interactions: 

E p 0 A i J  = p(sij,ti ,$)( 1 - tmh(Wpuir(4, - d:))). (2) 

The parameters p(si , , t , ,$)  determine the interaction strength and 
were chosen such that native sequence-structure pairs would be 
optimally discriminated from non-native alternative combinations. 
The parameters d$ and wpair control the step position and slope of 
the function and were based on  crude database statistics. To reduce 
the total number of parameters, interactions did not depend on 
chain direction, so p(s i , t i ,$ )  = p(sV,$, t i ) ,  and only three classes 
of topological distances were distinguished: i + j = i + 2, i + j = 
i + 3, and i + j 2 i + 4. Each class was treated separately with 
different sets of parameters. Adjacent ( i  + j = i + 1) residues 
were not treated explicitly in the interaction function. 

The  force field was based on 24 atom types. These were four 
backbone atoms, N, C", C, and 0, and 20 different Cp atoms, 
depending  on  the  amino acid type. This meant that, for a given 
topological distance, there were {24(24 + 1)}/2 = 300 interaction 
types. 

The  second term in Equation 1 was a single residue contribution 
depending  on the C" environment of each residue. One could see 
this as analogous to a solvent interaction contribution, but it was 
not parameterized as such and will also include general, nonspe- 
cific environment contributions. For simplicity and consistency, 
the same functional form  as for pair interactions was used: 

where ai is the amino acid type, n ( i )  is the number amino acids 
separated by more than three amino acids in the sequence with a 
C* carbon within 5.8 8, of C;.  The constant no was set to 3, 
approximately the average of n ( i )  over all amino acid types. 

This resulted in a total of 920 parameters to adjust [300 pair 
interaction parameters p(si,, t i ,   t j)  per class of topological distance 
sij and 20 atom parameters p(a , ) ] .  In addition, a total of 47 non- 
adjustable parameters were used (15 d: parameters per topological 
distance and two parameters wpoir and w,,~ determining the func- 
tion slopes). 

Parameter optimization 

Given a functional form for the discrimination function, one wants 
a set of parameters that optimally discriminate native from alter- 
native sequence-structure combinations. If one assumes that the 
energies for one sequence on  all possible nongapped alignments 
are Gaussian distributed, the normalization factor (z-score) de- 
scribes  the relative position of the native state relative to the dis- 
tribution of all states: 

E denotes the energy of an alternative structure, E,,,, is the energy 
of a native structure, and  the brackets ( ) denote the arithmetic 
average over all configurations. 

In a similar vein to the idea of Koretke et  al. (1996) and Hao and 
Scheraga (1996), the functional forms,  Equations 2 and 3, were 
chosen such that energy was linearly dependent on ~ ( L J ) ,  a scaling 
parameter dependent on the interaction type v. v, in turn, was given 
by the switching function: 

v =  [ p (s,,, t,, t j )  two-body  interaction  parameters (Equation 2) 

P ( a J  single-body  interaction  parameters  (Equation 3). 

Using this definition, an energy calculation is equivalent to the 
evaluation of a scalar product of a parameter vector P and a vector 
X ( R ,  S) depending on both coordinates I? and sequence $: 
" - 

The dimension of the vectors was given by the number of adjust- 
able parameters n, and the vectors were defined as 

Thus, the average alternative energy is given by 

(AE) = P(AZ(d,$) 

where a,,, and &,, refer to the native coordinates and sequence. 
The  average energy squared can be re-written as the sum over all 

elements of the Hadamard product of the matrices and .?): 

N N  

with ( A x i A x j )  the covariance elements: 

(Ax,Ax;) = ( (xi  - x ~ ' ) ( x ;  - xY')) 

= ( X i X j )  - (XJXYt - X y y X j )  + X y " X ; a l ,  
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where xi denotes the ith element  in X ( R ,  S) and p i  is denoted the 
i t h  element in 6. 

” + 

z-Score optimization 

The  goal of the parameter adjustment was to optimize the discrim- 
ination power of the force field or, in other words, to obtain the 
most negative z-scores (Equation 4) for proteins in the calibration 
set. In order to find the parameter vector that optimally discrimi- 
nates nlib native protein structures in the calibration set from al- 
ternative structures, the target function t was constructed as a 
weighted average of individual protein z-scores zi: 

This target function can be seen as a direct measure of force field 
quality or capability. The fourth power was an arbitrary choice, 
sharply penalizing non-native conformations. The constant of 15 
could be seen  as a target level and should be as large as possible. 
The value was determined by trial and error. The target function 
was minimized, with respect to force field parameters, by a quasi- 
Newton method (Shanno & Puha, 1976). This kind of local min- 
imization assumes that there is only one local minimum with respect 
to parameters. It was not proven rigorously, but the same result 
was achieved from five different, random start configurations of P. 
This target function is preferred to an arithmetic average of z-scores 
because proteins with z-scores closer to zero are given a higher 
weight and a better discrimination ability can be achieved. 

A minimization algorithm such as the one used in this work may 
require hundreds of function evaluations of Equation 12 to con- 
verge. This means one has to recalculate the z-score for each 
protein in the calibration set at every step parameter optimization. 
The most expensive aspect of this would be those properties (av- 
erages) that depend on the large number of alternate, incorrect 
structures. In practice, the averages given by Equations 9 and 10 
are independent of the parameters and need be calculated only 
once at the start of an optimization. This results in a remarkably 
swift method for  force field Parameterization. 

Parameter clustering 

In order to test the effect of the number of parameters on  force field 
performance, a series of parameterization calculations were done. 
At each step, the parameters were grouped using a standard cluster 
analysis algorithm, allowing the creation of an arbitrary number of 
class interaction types. 

Given a set of such classes, the parameterization could be  re- 
peated, resulting in a new force field with fewer parameters. 

The clustering algorithm was thc single linkage method (Mas- 
sart & Kaufmann, 1983) and was applied within each set of pa- 
rameters for a single topological distance. Thus,  for example, long- 
range parameters were not grouped with short-range parameters. 

Measure of force field performance 

Two different measures of force field performance were used: 

1. The z-score of each native structure in the  ensemble of alter- 
native structures. 

2. The correlation between energy and distance matrix error (DME) 
(Havel, 1990). 

where d,j is the distance between C“ atoms i and j in one 
conformation and di; is  the corresponding distance in the second 
structure. 

Results and  discussion 

Force field tests 

Force fields were tested using two different protein sets. 

1. The calibration/parameterization set, used in the optimization 
of parameters. This is a test of recall. 

2. The test set with only low sequence homology to proteins in the 
calibration/parameterization set.  This  is a test of generalization. 

The purpose of the first data set was to investigate the “learning 
capacity” of the force field and test whether the functional forms 
and the parameterization process are suitable. The second set tested 
the ability to generalize to unknown data and decide whether the 
force field reflected general protein structure information or was 
merely over-fitting to the data. Over-fitting would occur if the 
number of parameters was large relative to the information content 
of the training data. 

Suitable alternative structures 

For parameterization and analysis, we used a large number of al- 
ternative conformations to define a “reference state.” These alter- 
native structures were assumed to be “protein-like” and to reproduce 
an ensemble of important  conformations.  Using  fragments  from 
known database structures guarantees protein-like conformations in 
that alternative conformations will have regular secondary struc- 
ture, proper backbone torsion angle distributions, and will not suf- 
fer from steric overlap. Although it  is not guaranteed, the alternative 
structures will often be as compact as native structures. Because less 
compact structures were not included in the parameterization, the 
force field may be weak at discriminating native conformations from 
partly unfolded or otherwise non-native structures. 

The analysis of force field capability is largely based on z-scores, 
which assumes a Gaussian distribution of energies of alternative, 
misfolded structures. Figure lA ,  B, C, and D shows this distribu- 
tion for the alternative structures for  two  example proteins. The 
figure  also  shows a semi-logarithmic plot and the fit to the ex- 
pected quadratic function. 

z-Score of native sequence-structure combinations 

Figure 2A and B shows the force field’s performance for each 
structure in the calibration/parameterization set and in the test set. 
The z-score for each native sequence-structure pair is shown as a 
function of protein size. Few proteins larger than 100 amino acid 
have a z-score higher than -5, showing high statistical confidence 
in the ability of the force field to pick the correct fold from all 
alternative structures. For smaller proteins, the z-score is closer to 
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Fig. 1. Energy  distribution  of  alternative  conformations  relative  to  energy of native  structure. A: Protein  letc-. B: Protein  letc-, 
semilogarithmic  plot. C: Protein laep-. D Protein  laep-,  semi-logarithmic  plot. 

zero,  meaning  that  one  can  have  little  confidence  in  predictions. crude  accounting  for  solvent  effects.  At  the  same  time,  this  trend is 
This  trend  may  be  due  to  the  larger  number  of  {discriminative) probably  exaggerated by the smaller  number of alternative  struc- 
interactions in larger  molecules. It is also  possible  that  small  pro- tures for larger  proteins.  Because  a  sequence  can  only be threaded 
teins with a  relative  large  surface  area  suffer  from  the  force  field's onto  proteins  at  least as large,  there  are  simply  fewer  alternatives 
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Fig. 2. z-Scores  versus  protein  chain  length. A: Calibration/parameterization set. B: Test set. 
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for larger  structures.  The  poorer  performance of the  force  field 
with  small  proteins may also be due to the nature  of these  proteins. 
Many small  proteins  are  expressed  with  large  pro-regions  that  are 
cleaved  after  folding  and many contain  a  large  number of disulfide 
bridges,  which  may force the  sequence into otherwise  energetically 
nonoptimal  structures. 

Despite  a  different  protein  size  distribution  in  parameterization 
set  and  test  set,  the  z-score  results of the two  different  sets are very 
similar,  This is promising  for  structure  prediction,  because  the  test 
set is unknown to the force field and  demonstrates  that the force 
field is able to generalize  consistently for more  than  300  proteins. 

Performance with native-like structures 

For  successful  fold  recognition, it is necessary to recognize  native 
folds  and  very  desirable  to  recognize  folds  that  are  geometrically 
near  the  native.  This  is  difficult to show in general,  but an example 
was  constructed for the  trypsin  fold  motif. A fold  library  was 
constructed  containing  103  trypsin-related  proteins  taken  from  the 
FSSPlibrary (Holm & Sander, 1994) in  addition to the  calibration/ 
parameterization set of proteins.  This  meant  that  a  large  number of 
similar  decoy  structures  could be generated,  as  well as the  alter- 
native  structures  that  would  be  available  from  the  calibration/ 
parameterization  library.  The  test  sequence  was  from  &trypsin 
(PDB acquisition code ltpo), and  30,125  alternative  structures 
were  tested. 

For  each  alternative  structure,  the  difference  from  the  native  was 
measured  using  the  DME  of  Equation  13  and,  ideally,  the  force 
field  should  produce  results  such  that  alternative  structures  that  are 
near to the native  (low  DME)  are of lower  energy  than  those  very 
different  to  the  native.  One  would  expect  high  dispersion of ener- 
gies  at  high  DME,  but  at  least  one  would  want  a  funnel-like  rela- 
tionship  (Bryngelson et al.,  1995;  Onuchic et al.,  1995). 

Figure  3  displays  the  extent  to  which  this  scoring  function  pro- 
duces  a  funnel-like  relation.  When  the  structures are highly  similar 
to trypsin  (DME 5 1 A), the  energies  are  close to the  native  energy 
and  well  separated  from  the  energy  distribution of alternative  struc- 
tures. In this case, the fold  can be recognized  correctly. The limit 
of recognition  seems  to  be  near  4 A when the  energy of correct 
folds  becomes  too  close  to  incorrect  folds. 
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Fig. 3. Force field energies  versus DME for  P-trypsin.  The  native se- 
quence was threaded  onto 30,125 structures. 
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Fig. 4. Target  function  as  a  function of the  number of parameter classes in 
the  paramet&ization  process. 

Dependence on  number  of parameters 

The  number of parameters is a  crucial  point  in  any  data-fitting 
exercise. A certain  number of parameters is necessary to fit the 
general  features of  the data,  but  the  number of parameters  should 
be  kept  small  to  avoid  over-fitting.  In the case of fitting  parameters 
for fold  recognition  force  fields,  literature  estimates of the  approx- 
imate  number of parameters  span  the  range  from  less  than  ten  (Sun 
et al., 1995;  Thomas & Dill,  1996)  to  tens of thousands  (Hendlich 
et  al.,  1990;  Jones & Thornton,  1993). We tried  to  explore  the 
lower  limit of the  number of parameters in our  fold  recognition 
force field. Although  the  appropriate  number of parameters  de- 
pends on the  functional  forms  used for interaction  function,  our 
results may be some  upper  limit  because our interaction  functions 
were so simple.  Figure  4  summarizes  the  results of force  field 
parameterization  with  different  numbers  of  parameter  classes.  When 
reducing  the  number of classes  from  initial  920  to  127,  the  target 
function  (Equation  12) of the  parameterization  hardly  changes. 
With further  clustering of classes to berow  -100 parameters,  there 
is  a  rapid  increase of  the  target function  and  significant  deteriora- 
tion  of quality of  the fit. 

Ideally,  the  number  of  parameters  should  reflect  some  number of 
underlying  degrees of freedom  in  the  data.  Unfortunately,  this  is an 
unknown  quantity. It is then  especially  interesting to compare  these 
results with  Thomas  and  Dill  (1996).  Using  different  functional 
forms  and  a  smaller  test  set,  they  suggested  there  was  no  benefit in 
using  more  than 10 amino  acid  types.  Ultimately,  a  more  direct 
comparison  would  be  useful. 

Is the fisnctional form appropriate for  fold recognition? 

This  functional  form  was  chosen for several  reasons.  First, it is 
sufficient  to  distinguish two states and similar  “contact  potential 
terms”  have  a  successful  history in protein  fold  prediction  (Tanaka 
& Scheraga,  1976;  Miyazawa & Jernigan,  1985)  and  lattice  sim- 
ulations  (Lau & Dill,  1989;  Shakhnovich & Gutin,  1989,  1990). 
Second, the use  of a  continuous  form  with a defined  derivative 
with respect  to  parameters  allows  the  use of efficient  minimization 
methods.  Last,  the  form  does  not  have  a  narrow  range of distances 
that  result in low  energy,  as  would be the case with a  Lennard- 
Jones  like  term  (Levitt,  1976;  Oobatake & Crippen,  1981).  This 
means  that  calculated  pseudo-energies are less  sensitive to pertur- 
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Table 1. 

121P-, 
lamp-, 
lbbt2, 
lbucA, 
lclc-, 
ldaaA, 
ldynA, 
IfcdC, 
IgPb-, 
lhgeA, 
IhtmD, 
liscA, 
llki-, 
lmi  oA , 
ImsaA, 
lnif-, 
IPbp-, 
IPlS-, 
IprtD, 
IrfbA, 
IscuB, 
1 tml-, 
lvhh- , 
lyptB, 
ZbltA, 
2  cwgA , 
ZgstA, 
2mev1, 
2polA, 
2  tmvP, 
3pte-, 
IsbvA, 

Parameterization protein set (PDB acquisition codes) 

1311-, 1531-, 1931-, laaj-, laak-, labrB, 
laorA, laozA, larb-, lars-, lash-, lasu-, 
lbbt3, IbcfA, IbdmB, lbec-, lbet-, IbglA, 
lbvpl, lbw4-, lbyb-, IcauB, lcbg-, lccr-, 
lcmbA, IcnsA, IcpcA, IcpcB, lcrl-, lcsh-, 
IdeaA, ldhr-, ldih-, ldlc-, IdlhA, IdlhB, 

1 eca- , 
lfnc-, 
lgphl, 
lhlb-, 
lhucB, 
1 knb- , 
Ilpe-, 
lml s- , 
ImsfC, 
1 amp-, 
1PdnC I 

IpspA, 
Irpa-, 
IsltB, 
1 tphl , 
1vmoA , 
256bA, 
2bpa2, 
2dkb-, 
2hhmA, 
ZmtaC, 
2prd-, 
3 cd4-, 
3sdhA, 
7icd-, 

lpnrA, 

lede-, 
lfnf-, 
Igpr-, 
IhleA, 
1 hvd- , 
lkptA, 
IltsA, 
Imml-, 
Imup-, 
lonc-, 
IPfkA, 
1POC-. 
Iput-, 
Irsy-, 
l s r n ,  
ltrb-, 
lvsgA, 
2abk-, 

2dln-, 
2 k -  I 

2nacA, 
2rn2-, 
3 thy-, 
3sic1, 
7rsa-, 

ZbtfA, 

leriA, 
IfruA, 
lhan-, 
Ihmt-, 
Ihxx, 
1 lba- , 
1 lxa- , 
lmmoD, 
lnar-, 
lora-, 
Iphg-, 
IPpi-, 
lpyaB, 
lrtpl, 
lstd-, 
ItrrA, 
IwhtA, 
2acq_, 
2 cba- , 
2 ebn- , 
2hneI 
2omf-, 
2sas-, 
3est-, 
4blmA. 
8acn-, 

lesc-, 
Ucb-, 
Ihbe , 
IhmY- I 
lilb-, 
IlcpA, 
lmat-, 
ImmoG, 
InbaA, 
lordA, 
Iphr-, 
Ippn-, 
IPYP- I 
lrvaA , 
IsxcA, 
ItssA, 
lwhtB, 
2ak3B, 
ZccyA, 
2 end-, 
ZhpdA, 
2Pfl-, 
2scpA. 
3gapBI 
4enl-, 
8atcA, 

1 add-, 
latlA, 
lbip-, 
IcelA, 
lcsn-, 
1 dpb-, 
letc-, 
1 ghr-, 
lhcd-, 
1  hngA , 
liae-, 
llct-, 

lmnc-, 
lncfA, 
losa-, 
lpii-, 
lprcC, 
IqorA, 
IsacA, 
ItahA, 

lmhcA , 

IttbA, 
lws yB , 
2alp-, 
2 cdv- , 
2er7E, 
2  kauB , 
2pgd-, 
2sil-, 
3gly-, 
4  fgf-, 
8atcB, 

ladeA, 
latpE, 
1 bnh- , 
lcfb-, 
lctn-, 
ldppA, 
lexh-, 
Igky- I 
IhdcA, 
Ihpm- I 
likfL, 
lldm-, 

ImPp- I 
Indh-, 
loxa-, 
lpil-, 
lprcL, 
lrcb-, 
lsat-, 
ltca-, 
1  tupB, 
lxnb-, 
2 ayh-, 
2 chr- , 
2fal-, 
2  kauC , 
2 P~Y-, 
2 snv- , 
3grs-, 
4fxn-, 
8catA, 

ImhlA, 

laliA, 
1 bbpA , 
lbriC, 
IChmA, 
1 cus- , 
1 dupA , 
lfc2D, 
IgmfA, 
lhfh-, 
IhtbA, 
lirk-, 
1 lgaA , 
IminB, 

lirl-, 
llis-, 

Ipbn-, 
IPlq_, 
IprtB, 
IregX, 
lscuA, 
ltlk-, 
IvcaA, 

2  tmdA, 
3pmgAI 
4rhv3, 

Table 2. Test protein set (PDB acquisition codes) 

laapA, 
laml-, 
lbbl-, 
lccf-, 
IcolA, 
ld66A, 
lerl-, 
IfosF, 
1glqA, 
IhlpA, 
IhtrP, 
lifc-, 
IlenA, 
lmdaH, 
her-, 
lpcrH, 
lPP2L I 

lpyaA, 
ISCmA, 
lten-, 
1 try-, 
2 apr-, 
ZhpqP, 
2pleA, 
3 blm- , 
5znf-. 

laboA, 
1 spa-, 
Ibgh-, 
lcfh-, 
lcrb-, 
ldfnA, 
lezm-, 
lftz-, 
krPS-. 
1 hnr- , 
IhulA, 
lib-, 
llmb3, 
lmdyA, 
InscA, 
Ipht-, 
1ppt-r 
lr69-, 
1 s9t-r 
1 thg-, 
lukz-, 
2  bpa3, 
2  kauA , 
2shl-, 
3mddA, 
7apiA, 

labrA, 
1 arv- , 
IbmtA, 
lcgmE, 
IcseE, 
Idmc-, 
lf3g-. 
lfxd-, 
Igsq_, 
lhoe-, 
IhumA, 
lilrl, 
1 lmwB , 
lmi OB, 
lntn-, 
lpi2-, 
lprcM, 
IrblM, 
IshaA, 
ltib-, 
lutg-, 
2cbh-, 
2 lhb- , 
2sn3-, 
3rp2A, 
7apiB, 

ladr-, 
latx-, 
lbtl-, 
lchl-, 
lctf-, 
ledt-, 
lfca-, 
IgauA, 
lhcnB, 
Ihpt-, 
lica-, 
1 kdu- , 
llvl-, 
Imp- t 
Ipsa-, 
Ipmc-, 
lpsf-. 
lris-, 
lspbP, 
ltin-, 
lyrnA, 
2 cyr- , 
2mev3, 
2  tprA, 
4dfrA, 
BfabA, 

lafp-, 
lavdA, 
lc5a-, 
lcis-, 
lctl-, 
lege-, 
lfct-, 
lgbrA, 
lhcrA, 
lhrf-, 
liceA, 
lknt-, 
IlybA, 
ImntA, 
lpaz-. 
IpmlA, 
lpsm-, 
Irpo-, 
ISPf-, 
ItlfA, 
1 yrnB , 
2 exo- , 
2mev4, 
2trxA, 
4icb-, 
8 rxnA 

lagt-, 
lbabB, 
lcbn-, 
lckaA, 
lctm-, 
lehs-, 
IfipA, 
1gdhA I 
Ihip-, 
lhsbB , 
lidm-, 
llac-, 
IlybB, 
lmylB, 
lpbxB, 
IPmy-, 
Iptf-, 
lrtc-, 
lstu-, 
ItnfA, 
1 ysaC , 
2fcr-, 
ZPCdA, 
2uce-, 
4ptp-p 

1 akp-, 
lbba- , 
lcbs-, 
lclh-, 
lcxc-, 
1 eny-, 
IfivA, 
Igfd-. 
lhks-, 
lhsn-, 
1 idsA , 
IldnA, 
IlYI-, 

lleb-,  lled-, 
lmal-, 
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bations of coordinates and more tolerant of “errors” in geometry, 
which makes processing of structures to remove strains (Park & 
Levitt, 1996; Ulrich et al., 1997) unnecessary. 

Is the Parameterization methodology appropriate? 

Parameters were optimized using function minimization, which is 
known to fail if the  function hyper-surface is rough and bamers 
separate local minima. To our surprise, this is not the case with our 
target function (Equation 12). The hyper-surface turned out to be 
smooth and function minimization was able to locate a single min- 
imum from five randomly chosen starting configurations of 8. As 
a last check, parameter  dynamics simulation on the target function 
hyper-surface, similar to the method of Ulrich et al. (1997),  com- 
bined  with  simulated  temperature  annealing  (Kirkpatrick  et al., 
1983), was performed. No improvement of the results was obtained. 

Are the measures of significance appropriate? 

We used two different measures to assess the quality of the force 
field. Although these measurements are not completely indepen- 
dent of each other, they give a representative description of the 
performance of a force  field. 

The z-score describes the energy of the native or any other single 
structure relative to an idealized energy distribution of all alterna- 
tive structures. Therefore, the z-score depends highly on quality of 
the decoy structures used in the ensemble of alternates. 

Analyzing the correlation between energy and  DME of mis- 
folded structures avoids this problem. Nevertheless, this measure 
is not invariant with arbitrary scaling of energies (which does not 
affect discrimination properties) and therefore requires an addi- 
tional external energy reference. 

Concluding remarks 

The philosophy of this work has been that, by building a force field 
optimized for discrimination, one should obtain better performance 
than using a force field that simply reflects structural properties of 
native structures. Because we find a global minimum to the force 
field construction problem, one could go so far  as to say that this 
is  the best possible force field. Of course, this is only true in the 
framework of the functional form and with respect to the target 
function (Equation 12) used. 

The parameterization and testing has only been conducted on 
ungapped alignments and  it  is likely that the parameter set here is 
not ideal for calculating sequence-structure alignments. Continu- 
ing in this vein of specialized force fields, a different optimization 
methodology has been used with different functional forms and a 
different target function for the sequence-structure alignment prob- 
lem (unpubl. results). This scoring function is only expected to be 
used, given a reasonable native-like alignment produced by a sep- 
arate alignment procedure. Hence, this work has been restricted to 
ungapped alignments (with a very large number of decoys) and 
testing with common literature measures such as z-scores. 

For comparison, the results here have been based on  common 
literature measures such as z-score, and the results cover a large 
range of proteins. At the same time, the family of native proteins 
and decoys is probably different from every other in the literature, 
so a true comparison of force field performance is not really pos- 
sible and some of the claims  in  this work remain as unsubstantiated 
as others in the literature. 

Methods 

Data  sets 

The calibration/parameterization set of proteins was taken from 
Hobohm and Sander (1994), March 1996 release, and consisted of 
protein chains  such that no sequence had more than 25% sequence 
identity with any other member of the set. From this  list,  chains of 
100 or more residues and with all backbone heavy atoms were 
selected. This resulted in a set of 370 protein chains in the final 
calibration set (Table 1). 

A library of misfolded, decoy structures for each protein chain 
was generated by threading the native sequence onto all structures 
of the same or larger size in the protein library, resulting in a total 
of 10.54 million alternative structures for the 370 native structures. 

For testing, a second set of 342 proteins was chosen (Table 2), 
again from the list of Hobohm and  Sander (1994), such that no 
protein had more than 45% sequence identity with any other mem- 
ber or any member of the calibration set. Unlike the calibration set, 
no criterion was applied for chain length and the test set contained 
many chains of less than 100 residues. Using threading, there were 
5.41.  lo6 alternative, misfolded decoy structures generated for this 
set. 

Building the force field 

Parameters were optimized by minimization of the target function 
(Equation 12) using the parameterization set of 370 proteins until 
the energy gradient was smaller than After the raw force 
field with 920 adjustable parameters was obtained, parameters 
were clustered and new force fields were generated with 65, 80, 
95, 112, 127, 157, 187, 217, and 247 distinct parameter classes. 

Supplementary material in  Electronic  Appendix 

The  force field parameters are provided as supplementary material. 
A program capable of scoring alignments using this force field can 
be found at ftp://ftp.rsc.anu.edu.au/-torda/README. 
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