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An optimization protocol is proposed that combines a mean field simulation approach with 
Boltzmann-weighted sampling. This is done by including Boltzmann probabilities of multiple 
conformations in the optimization procedure. The method is demonstrated on a simple model 
system and on the side-chain conformations of phenylalanines in a small hexapeptide. For 
comparison, calculations were performed using classical stochastic dynamics simulations [ M .  
Saunders, K. N .  Houk, Y. Wu, C. Still, M. Lipton, G. Chang, and W. C. Guida (1990), Journal 
of the American Chemical Society, Vol. 12, pp. 141 91, iterative optimization of probabilities 
on a j x e d  set ofbasis conformations [ P. Koehl and M.  Delaure (1994), Journal of Molecular 
Biology, Vol. 239, pp. 249-2751, and simulations with locally enhanced sampling [A.  Roitberg 
and R. Elber ( I  991),  Journal of Chemical Physics, Vol. 95, pp. 9277-92871. Although approx- 
imations are used in our method, the results may be more physically meaningfiul than those of 
the other procedures discussed. Furthermore, the approximate Boltzmann distribution allows 
generalization of the results. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

Computer simulations of biological molecules may 
provide information at the atomistic level and offer 
insights unavailable with other methods. Gener- 
ally, one wants to find the ensemble of structures 
spanning the physically important low energy con- 
formations. Unfortunately, standard heuristic con- 
formational search methods like Metropolis 
Monte Carlo (MC) or molecular dynamics (MD) 
simulations are poor at crossing energetic barriers 
at reasonable temperatures and they sample only 
small regions of conformational space. 

Many methods based on dynamic or nondy- 
namic schemes have been developed to attempt to 
search broader regions efficiently for low energy 
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conformations. The most commonly applied is 
probably simulated annealing, I which relies on 
temperature evolution in time. Potential energy 
annealing conformational search’ attempts to take 
advantage of the shape of the potential energy hy- 
persurface. The local elevation technique3 includes 
a long-time memory and enhances sampling by lo- 
cal modifications to the potential surface. There are 
several other methods that rely on temporarily in- 
creasing the dimensionality by adding artificial de- 
grees of f r e e d ~ m . ~ - ~  Gerber et al.’’ introduced the 
idea of using the classical time-dependent Hartree 
(TDH) approximation for faster sampling. This 
uses the algebraic average field of a “bundle” of tra- 
jectories and was modified, investigated, and suc- 
cessfully applied by several authors, ’ ‘-I6 including 

CCC 0006-3525/96/0 10103-1 2 

103 



104 Huber, Torda, and van Gunsteren 

Elber and co-workers 17-2’  with his variation called 
locally enhanced sampling (LES). 

A drawback of the current methods is that they 
are pure search procedures, usually with an un- 
known distribution of energies among conforma- 
tions. This means that physical properties may be 
incorrectly estimated and a statistical generaliza- 
tion of the results can be difficult. Furthermore, in 
some systems, the global minimum may not be a 
satisfactory solution by itself. Observed properties 
reflect the distribution of the ensemble across all 
accessible minima, not just a single, idealized min- 
imum energy structure. 

Our approach2’ is intended to improve sam- 
pling of conformational space while giving an ap- 
proximate Boltzmann distribution. This was done 
using an extension of the classical time-dependent 
Hartree approximation. The method can be seen 
as a modification of the TDH approximation with 
multiple copies of a system or part of a system. 
Normally, each copy within a system would be of 
equal probability, independent of time. In contrast, 
our method treats the probabilities of conforma- 
tions as additional variables with the only con- 
straint that the probabilities satisfy the Boltzmann 
relation. With these extra degrees of freedom, a sys- 
tem may more easily adopt a low (mean field) en- 
ergy since it can change the mean conformation 
through either a change in the probability distribu- 
tion or through conformational changes. 

THEORY 

We wish to obtain a Boltzmann ensemble of con- 
formations of some system. This might be either a 
whole set of molecules, like a drug in a receptor 
surrounded by solvent, a molecule from the set, 
like the drug in a receptor, or a part of a molecule. 
The n atoms of the molecular system have atomic 
coordinates indicated by xi ( i  = 1,2, . . . , n ) .  The 
conformation X ,  for molecule a is specified in 
terms of a particular set of atomic coordinate val- 
ues. 

The energy of the conformation is given by 

where V (  X,) = V (  { x ; ,  x;. . . x i } )  is an atomic 
interaction function. 

For a Boltzmann ensemble of molecular confor- 
mations, the relationship between the probability 
of occurrence, indicated by pn, and energy En of a 
conformation is given by the Boltzmann relation 

where T is the absolute temperature, kB is Boltz- 
mann’s constant, and the summation runs over all 
NA members of the ensemble of conformations. 

Physical properties of the molecular system are 
obtained as averages over the ensemble of confor- 
mations. For a physical quantity (observable) Q ,  
which is a function of atomic coordinates, the en- 
semble average (Q) is defined by 

= ti;,] s,’”” Q [ X (  t’)] dt‘ molecular dynamics 

NhK.  

= NG(. 2 Q( X,) Metropolis Monte Carlo 
n€M(‘ 

(4 )  

In MD simulation, the ensemble average is ob- 
tained as a time average over the atomic trajecto- 
ries of time length tMD. In MC simulation, the en- 
semble average is obtained as an unweighted aver- 
age over the sequence of NMc. conformations. For 
the average energy of the molecular system, one 
obtains 

In the mean field description, the molecular sys- 
tem is separated in M parts ( A ,  B ,  . . .), each rep- 
resented by NA identical copies ( a ,  @, . . .) of 0 
atoms ( i , j ,  . . .). Each ofthese copies moves in the 
mean field (E) of all other parts, given by 

A n  

with p ( A  , a )  the relative Boltzmann probability of 
copy a in part A 
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and E ( A ,  a )  the energy of a copy a in part A. For 
example, one could explicitly write the nonbonded 
interactions as 

I J # I  

where V (  A ,  a, i ;  B ,  P, j )  is the atomic interaction 
function of atom i in copy a of group A with atom 
j in copy P of group B. From the last formula one 
can see that copy a of a group does not interact 
with any other copy representing this group and 
that the full interaction between atoms of this copy 
contributes to its energy. Next, the energy E( A ,  a )  
of a copy a depends on the set of probabilities from 
all copies of all other groups, but not on its own 
probability. With Eq. ( 7 )  this gives a selfconsistent 
set of nonlinear equations for the energies and 
probabilities of all copies in the system. 

The computational problem is now to minimize 
( E )  with the Boltzmann relation ( 7 )  as constraint. 
That is, one must find a Boltzmann-distributed en- 
semble of configurations on a very high-dimen- 
sional and complex interaction function V (  X,) as 
is generally used in biomolecular modeling. 

Since the average energy ( E )  in Eq. (6)  depends 
on both conformational coordinates X ,  and con- 
formational probabilities pa of all copies, we distin- 
guish three types of optimization algorithms. 

Variation of Conformational Coordinates 
with Fixed Probability Distribution 

Probabilities can be treated as fixed. This requires 
the approximation that a variation of conforma- 
tional coordinates does not affect the probability 
distribution.”-2’ Because of the possible inter- 
change of conformations, this results in uniform 
probability distributions. This, however, would 
only be physically reasonable if the simulation 
were performed at infinite temperature or the 
method produced a Boltzmann ensemble in finite 
simulation time, despite the complex and high-di- 
mensional energy surface. Because one simulates 
at finite temperature and because simulations are 
of finite length, one must be careful interpreting 

Variation of Conformational Probabilities 
with Fixed Basis Set of Molecular 
Conformations 
With the dependent Eqs. ( 7 )  and ( 8 ) ,  the pro- 
bability distribution for a fixed basis set { In} of 
conformations is fully determined. Therefore, the 
probability distribution can be calculated by either 
iterative evaluation of these equations to self-con- 
sistency or by matrix inversion  technique^.^^ How- 
ever, the quality of the solution depends critically 
on the choice of the fixed starting conformations, 
which serve as the basis for the probability distribu- 
tion. Even if this were possible for very small, well- 
defined systems, it is obviously not possible to iden- 
tify all important conformations for a realistic 
molecule with many degrees of freedom and a 
multitude of contributing states. 

Simultaneous Variation of Conformational 
Coordinates and Probabilities 
With simultaneous, or quasi-simultaneous, varia- 
tion of both coordinates and probabilities, one is 
able to combine the advantages and avoid the dis- 
advantages of the previous methods. A correct 
weighting between the conformations can be ob- 
tained because the probabilities are allowed to vary 
and adapt to the conformations. Furthermore, the 
choice of a basis set of starting conformations is not 
critical. All copies representing a single part of the 
molecule are individually changed according to 
classical equations of motion and automatically 
adopt low energy conformations. To evaluate the 
force on particle i of copy a in group A ,  F r n ( ~ ,  a, 
i), it is straightforward to calculate the negative de- 
rivative of the total (mean) energy with respect to 
the Cartesian coordinates ; ( A ,  a, i) of particle i. 
With the approximation that probabilities are con- 
stant during a simulation step, they can be treated 
as parameters, thus 

zrn(A9 a, i )  

(9)  

such simulations. j # i  
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If F ( A  , a, i; B ,  p, j )  denotes the force on atom i in 
copy cy of group A exerted by atom j in copy of 
group B, then 

Since copy a of a group only contributes to the 
mean with the weight of its probability, the original 
masses m( A ,  a, i) of each atom i in each copy a 
and group A must also be scaled so as to conserve 
the total mass of the group. One then takes 

m*(A,  a, i) = p ( A ,  a)rn(A, a,  i) ( 1  1)  

When integrating the equation of motion, 

for a system, E(A, a )  and p ( A ,  a )  should satisfy 
the Eqs. (7)  and (8). This means that at each sim- 
ulation time step the nonlinear set of self-consis- 
tent equations has to be solved, e.g., by iteration or 
matrix inversion. However, a good guess of the set 
{ E ( A ,  a ) ,  p ( A ,  a ) }  will be available from the pre- 
vious MD step t,-, . This means one can determine 
E ( A ,  a )  andp(A, a )  at time t, [ viz. E ( A ,  a; t,) and 
p ( A ,  a; t,)] using only one iteration. Thus, one can 
write 

and 

and 

and 

METHODS 

All simulations were carried out using modified pro- 
grams from the GROMOS suite.24 

Iterative optimization procedures were started with a 
uniform probability distribution and continued until 
self-consistency. Self-consistency was detected by a small 
change in the probabilities between iterations. The crite- 
rion was that the sum of squared differences of probabil- 
ities with respect to the previous iteration be smaller than 
some threshold 

The instantaneous mean field energy of a conforma- 
tion may fluctuate substantially between initial iteration 
steps. Because ofthe exponential weighting in the proba- 
bility calculation, this could lead to large fluctuations in 
the probability of a conformation. Since these fluctua- 
tions are of little real significance and impair the con- 
vergence, a memory function was used to calculate the 
average energy over the recent history. It was this 
effective energy that was actually used to calculate the 
probability of the copy. Referring to this effective energy 
at iteration step t, as Een.(A, a; t,,), an exponential 
weighting was used with a decay constant rl: 

T ~ ;  was set to 0.25 ( a  dimensionless value). This led to 
convergence in all simulations and no attempt was made 
to optimize this parameter for speed of convergence. 

For all the dynamics simulations, a stochastic dynam- 
ics integrator25 was used with a friction coefficient of y 
= 19 ps-I , a time step of 2 fs and the SHAKE algorithm26 
applied to constrain bond lengths. Each system was cou- 
pled to a temperature bath2' at 300 K with a coupling 
constant T~ = 0.1 ps in the pentane simulations, or T~ 

equal to the time step. All interactions were evaluated 
without truncation of forces beyond a cutoff radius. All 
simulations used the GROMOS 37D4 vacuum force 
field.24 

Pentane 

The first simulations were performed on a simple model 
system to highlight the effect of the mean field approxi- 
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mation and the dependence of the mean field on the 
number of copies. Pentane, in the united atom represen- 
tation, is a linear chain of only five atoms and its confor- 
mation is well described by just two dihedral angles. The 
simulations were performed with both the first ( C1 ) and 
the last ( C 5 )  atom ( M  = 2) of the chain represented by 
either N A  = Nn = 20 or NA = Nn = 360 copies. Initial 
positions were generated by taking a single-copy pentane 
and energy minimizing it in the force field. The terminal 
atoms were then copied and rotated in steps of 18" or 1" 
as appropriate. Unlike a normal MD simulation, these 
calculations require initial probabilities for copies, as 
well as coordinates. These probabilities were calculated 
by an iterative evaluation of the energy and correspond- 
ing Boltzmann probability at 300 K via Eqs. ( 7 )  and (8 )  
until self consistency was reached. 

Cyclo- ( -D-Pro-Phe-Phe-Pro-Phe-Phe- ) 
Peptide 

The phenylalanine side-chain conformations play an im- 
portant role in the biological activity of this small cyclic 
hexapeptide.28 The conformation of a phenylalanine side 
chain is well described by the torsion angles x I  and x2. 
Thus there are eight independent variables and the eval- 
uation of the conformational probabilities is not an easy 
task. To demonstrate this problem, a free stochastic dy- 
namics simulation of this peptide over 1 ns was per- 
formed. 

As a reference point for testing the methodology, the 
first calculations on the hexapeptide consisted of opti- 
mizing probabilities while keeping coordinates fixed. 
The aromatic ring of each of the four phenylalanines was 
copied 100 times. Within each side chain, the aromatic 
ring copies were all bound to a single C0 carbon. The cop- 
ies at each of the four phenylalanine residues were then 
distributed evenly within the allowed space by rotating 
through 10 steps (of 36") at both x I  and x2 dihedral an- 
gles. This resulted in a crude discretization of space, but 
with two dihedral angles ( x I ,  x2), the number of copies 
grew quadratically with the number of steps per torsion 
angle. With only 100 copies, the number of atoms in the 
system grew from 62 in the original peptide to 2438 in 
the multiple sidechain one. 

In a subsequent test, only 20 copies were used for each 
phenylalanine side chain and simulations performed 
with simultaneous dynamics of both coordinates and 
probabilities. The initial conformation was generated by 
setting the coordinates of each copy to be identical. This 
collection was then equilibrated at 600 K for 50 ps, re- 
sulting in a well distributed set of conformations, without 
unreasonable steric properties or impossible conforma- 
tions. Simulations of 250 ps were performed using both 
a Boltzmann-weighted mean field and the LES method29 
in which each conformation was equally weighted. 

RESULTS AND DISCUSSION 

Pentane 

This 5-atom model was used to demonstrate the 
basic features of our mean field approach. 

Mean Field Properties. Because of the mean field 
description of the CI and C5 atoms in the pentane 
model, the potential energy profiles along the two 
internal dihedral angles $, and $2 become the same 
as the number of copies increases. Therefore no en- 
ergetic discrimination of the conformations $ I 

= 6V/-60", 42 = -60"/60" against the conforma- 
tions $, = 60"/-60", $2 = 60"/-60" in the mean 
field is possible. 

Temperature Eflect. Figure l a  shows the relative 
Boltzmann probability distribution along the dihe- 
dral angle $ after optimization at different temper- 
atures. As expected, the probability distribution is 
uniform for infinite temperature and the probabil- 
ities of low energy conformations increase when 
the temperature is lowered. In the limit ofzero tem- 
perature, this results in a single conformation (the 
one with lowest energy). As the probability distri- 
bution changes, the mean field undergoes corre- 
sponding changes. This is shown in Figure Ib, 
where the field experienced by a test particle at the 
CI methyl position, due to the mean C5 particle, is 
plotted as function of the dihedral angle for sev- 
eral temperatures. The C5 atom was represented by 
360 copies. One can view this diagram differently. 
The field experienced by the CI atom is due to an 
average C5 atom and this average C5 atom includes 
Boltzmann weighting. This averaging over possible 
conformations with the correct weighting is similar 
in spirit to a free energy calculation. It is interesting 
to note that the plot has some characteristics of a 
free energy profile for rotation about the dihedral 
angle. 

The plot suggests that local minima are 
smoothed out, while the location of the global min- 
imum remains undisturbed. Unfortunately, this is 
not generally the case. At high temperature, the 
mean field can cause local minima to be of lower 
energy than the true global minimum (of the con- 
ventional force field). As long as temperatures are 
not too high, this is not a practical problem since 
the mean field represents only a minor distortion 
of the true force field. 
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FIGURE 1 Pentane at different temperatures using 360 copies to represent C, and Cs atoms. 
( a )  Relative Boltzmann probability distribution vs internal dihedral angle 4. (b)  Boltzmann 
weighted mean field potential vs internal dihedral angle 4. Points represent results from a 20- 
copy model. 

Distribution Effect. A serious question for appli- 
cations is how many copies are needed for a rea- 
sonable description of the mean field. To this 
end, the calculations with the pentane model 
were repeated, but with 20 instead of 360 copies. 
Figure 1 b shows the comparison. Results from 
the 20-copy system were plotted as symbols on 

top of the continuous lines, which give the results 
of the 360-copy system. The good agreement 
shows that, in this very simple case, an initial grid 
spacing of 18" is adequate. In contrast, reducing 
the number of copies to five showed a deteriora- 
tion of the mean field (data not shown). This de- 
terioration is due to the relatively large signifi- 
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cance that interactions between individual cop- 
ies take. 

An intriguing problem that appears in the dy- 
namic approach is that the copies tend to adopt a 
Boltzmann distribution due to the molecular dy- 
namics technique. This can lead to double weight- 
ing of conformations when conformations rapidly 
exchange and sample a proper Boltzmann ensem- 
ble by themselves. This is the case in the simulation 
of the 20-copy pentane model. In most systems, 
however, simulation time is not sufficient to prop- 
erly sample different conformations and the possi- 
bility of double weighting in our method leads, in 
our opinion, to a much smaller error than the use 
of equal weighting of each conformation. 

Cyclo- ( -D-Pro-Phe-Phe-Pro-Phe-Phe- ) 
Peptide 

This small hexapeptide was used for several rea- 
sons. First, the small number of atoms means that 
simulations are computationally cheap. Second, it 
has four bulky phenylalanines for which classical 
simulation methods like MD or SD fail to produce 
proper statistics for the different side chain confor- 
mations. 

This system also served to give some idea of the 
computational expense of the method. In the case 
of 100 copies, the number of atoms increased from 
62 to 2438. The computational effort, however, did 
not increase as would be expected for a system of 
more than 2 X lo3 atoms. Copies of a single site 
do not interact with each other, so the number of 
interactions to be calculated does not grow as in a 
conventional system with the same number of par- 
ticles. 

Conformational Coordinate Optimization by Free 
Simulation. The difficulty in generating proper 
statistics for phenylalanine side-chain conforma- 
tions in dynamics simulations is shown by Figure 
2. This gives the internal angle xYhe2 during a 1 ns 
SD simulation trajectory. Conformational transi- 
tions can be observed on a time scale of a few hun- 
dred picoseconds and only a few transitions occur 
during the whole simulation. The starting structure 
and the height of energy barriers completely deter- 
mine whether or not the most probable conforma- 
tions are sampled at all. For the simulation shown, 
an unlikely conformation was chosen to start with 
and no transition to the most favored conforma- 
tion ( x i  = 60") took place during the whole simu- 

lation. For this system, it is clear that side-chain 
statistics extracted from conventional molecular 
dynamics simulation, even if longer simulations 
are performed, have little physical meaning and are 
associated with huge errors. 

Probability Optimization. The situation is differ- 
ent in the Boltzmann-weighted multicopy ap- 
proach. Because each conformation can move to 
any other conformation along an artificial degree 
of freedom (the relative probability), normal phys- 
ical transitions such as rotations about dihedral an- 
gles are not necessary. This is demonstrated on the 
model peptide where each phenylalanine is repre- 
sented by 100 copies, uniformly distributed in xi- 
x2 space. While Cartesian coordinates were kept 
fixed, the relative Boltzmann probability distribu- 
tions of all four phenylalanines were optimized by 
iteration. In Figure 3 the mean field energy is plot- 
ted as a function of the iteration step. The energy 
converges to a final value of 254 kJ/mol. Due to the 
use of a memory term in the mean field potential 
energy [Eq. ( I S ) ] ,  a plateau or even a slight in- 
crease of the mean field energy is observable. This 
shows why the change of probabilities was chosen 
as a criterion for convergence rather than an energy 
difference. 

The converged probability distribution for the 
Phe2 side chain is shown in Figure 4a. The maxima 
of probability are found for the conformation x I  
N 60". Two structurally identical orientations of 
the aromatic ring, with a shift of 180", can be seen 
along the angle x2 .  The probability maxima at x1 
x 60" are markedly shifted from the usual x2 
N 90"/-90". This could be a steric effect due to 
the other side chains, or an artefact due to the wide 
spacing of basis conformations. Although this plot 
gives a good impression of the probability distribu- 
tion, it suffers from poor resolution. The spacing 
between neighboring conformations is 36" in the 
x1 or x2 dihedral angle and is not fine enough to 
pinpoint minima (see Figure 4a). Furthermore, 
the result may be biased since the conformations 
are generated by rotating the side chains of a mini- 
mized starting structure around the torsion angles 
xi and x2.  One conformation (the starting 
structure) is located in an energy minimum, 
whereas the other conformations are defined by rel- 
ative dihedral angle differences to the starting 
structure and may not be located in minima of the 
potential energy. To overcome this problem, the 
next step was to allow the conformations to adapt 
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FIGURE 2 The x, in PheZ during a 1 ns free stochastic dynamics simulation of cyclo-( -D- 
Pro-Phe-Phe-Pro-Phe-Phe- ) . 

low energy conformations with a dynamics simu- the conformations: First, the relative Boltzmann 
lation technique. probability was used. This is the relative weight of 

a conformation in the simulation given by the Bol- 
Simultaneous Probability and Conformational tzmann relation. Second, the probability of occur- 
Coordinate Optimization. For analyzing the re- rence was defined as the number of times the con- 
sults, we used two different relative probabilities of formation occurs in a simulation trajectory as a 

285 280 8 

255 t u 
0 50 100 150 200 250 300 

number of iteration step 

FIGURE 3 Mean field potential energy during iterative optimization of the probability dis- 
tribution in cyclo-( -D-Pro-Phe-Phe-Pro-Phe-Phe-) . Each phenylalanine was represented by 
100 copies uniformly distributed in xI-x2 space. 
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FIGURE 4 Relative Boltzmann probability distribution of the Phe' side chain in xI-x2 
space after optimization. (a)  Iterative optimization with a fixed set of 100 basis conformations. 
The grid shows the location of the basis conformations. (b) Stochastic dynamics simulation in 
a Boltzmann weighted mean field (averaged values). 

fraction of all conformations. Since conformations 
are counted, each conformation gets the same 
weight. 

In Figures 5a and 5b, both probabilities are 
shown for the x I  dihedral angle of the Phe2 side 
chain during a Boltzmann-weighted mean field 
simulation. In Figure 5c the probability of occur- 
rence of the same dihedral angle in a LES simulation 
is given. Since, in LES simulations, each conforma- 
tion is equally likely or equally weighted, only the 
probability calculated by counting is plotted. 

Although the probability of occurrence distribu- 
tions from the LES simulation (Figure 5c) and 

the Boltzmann-weighted mean field simulation 
(Figure 5b) look similar, they differ significantly 
from the distributions when correct weighting 
(Figure 5a) is used. In the LES simulation, the in- 
dividual copies of the side chain move in the arith- 
metically averaged field of the other side-chain cop- 
ies, but in the Boltzmann weighted mean field sim- 
ulation, they move in a completely different field. 
This different potential energy field is closer to the 
natural potential energy, so a different and more 
natural dynamics of the system is expected. 

With the correct weighting, the conformations 
with x1 dihedral angle of 60" are much more fa- 
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FIGURE 5 Time evolution ofthe probability distribution of x, ofthe Phe2 side chain during 
( a )  Boltzmann-weighted mean field simulation, Boltzmann-weighted probabilities; (b)  Boltz- 
mann-weighted mean field simulation, probabilities of occurrence; (c )  LES method, probabil- 
ities of occurrence. 
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vored due to lower energy, even if the conforma- 
tion at xi  = -60" is sampled more often. This result 
is in good agreement with results in the previous 
section obtained from the iterative optimization of 
probabilities with a fixed basis set of conforma- 
tions. However, in contrast to calculations with 
fixed discrete conformations (Figure 4a), a proba- 
bility distribution in continuous conformational 
space is obtained (Figure 4b). Furthermore, one 
has a higher resolution with which to exactly locate 
probability maxima. 

CONCLUSIONS 

The iterative optimization of probabilities using a 
fixed basis set of conformations is an adequate 
method to obtain the relative Boltzmann probabil- 
ity distribution for a set of conformations. The re- 
sults, however, are highly dependent on a proper 
choice of the basis conformations. Even for rela- 
tively simple situations such as the orientation of 
side chains in proteins, this is not easy. Small de- 
viations of a conformation from the minimum- 
energy position can result in big changes of the 
potential energy. This results in even larger 
changes in the probability distribution due to the 
exponential dependence of the probability on the 
energy. 

In contrast, it was shown that using a dynamic 
scheme to optimize both variables-probabili- 
ties and conformational coordinates-simulta- 
neously results in much more accurate solutions. 
At the same time, one must be aware that the 
combination of molecular dynamics and an ad- 
ditional weighting of conformations can lead to 
an overweighting of low energy conformations. 
Unfortunately, it is not possible to state the se- 
verity of this problem in general. It depends on 
the barriers preventing the interchange of confor- 
mations and the problem vanishes in the limit of 
conformations which never interconvert. The 
hexapeptide example here is one case where con- 
formations are relatively fixed (see Figure 2 )  and 
the Boltzmann weighting is essential. Despite 
these uncertainties, the dynamic optimization of 
Boltzmann-weighted conformations appears to 
be an attractive method to obtain proper proba- 
bility distributions of conformations in situa- 
tions where conventional methods fail. 

Financial support from the Schweizerischen National- 
fonds (project 5003-034442) is gratefully acknowledged. 
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