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Improved Wang-Landau sampling through the use of smoothed
potential-energy surfaces

Phuong H. Nguyena�

Institute of Physical and Theoretical Chemistry, J. W. Goethe University, Marie-Curie-Strasse 11,
D-60439 Frankfurt, Germany

Emil Mittagb� and Andrew E. Torda
Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, D-20146 Hamburg, Germany

Gerhard Stock
Institute of Physical and Theoretical Chemistry, J. W. Goethe University, Marie-Curie-Strasse 11,
D-60439 Frankfurt, Germany

�Received 9 February 2006; accepted 7 March 2006; published online 21 April 2006�

A method is presented to improve the speed of convergence of Wang-Landau simulations as used to
calculate the density of states of continuous systems. The density of states is first crudely estimated
with calculations employing a smoothed potential-energy surface. This estimate is then used as a
seed for subsequent Wang-Landau simulations using the original potential. The performance of the
method is demonstrated by employing several simple models, including an analytically solvable
harmonic system as well as a Gō model of a protein. For all systems considered, the seeded
simulations were found to converge significantly faster and with higher accuracy than the standard
Wang-Landau simulations. © 2006 American Institute of Physics. �DOI: 10.1063/1.2191060�
I. INTRODUCTION

The density of states is a sought-after quantity, especially
in complex systems. If it is known, it can be used to calculate
thermodynamic properties of a system via standard
relationships.1 In other contexts, it may serve to provide sam-
pling weights for efficient Monte Carlo schemes.2,3 Here, we
propose a method purely aimed at speeding up the estimation
of the density of states and apply it in the framework of the
recursion introduced by Wang and Landau.4,5

Obviously, the density of states is intimately tied to the
statistical description of a system. Given some temperature
T, it is the key to the canonical probability distribution

P�E� = g�E�exp�− �E� , �1�

where �=1/kT, k is Boltzmann’s constant, and g�E� is the
density of states as a function of energy. Rather than treating
the density of states as an end in itself, it may have another
important role. Estimation of the density of states is the first
step in the Wang-Landau procedure,4,5 which is an example
of a broader class of two stage simulation methods.

In conventional Metropolis Monte Carlo,6 one uses the
Boltzmann weight of an energy �e−�E� as the basis of the
acceptance criterion, but this will not always be the best
choice. Given the exponential term, there may only be a
minute probability of visiting high energy states and escap-
ing from local energetic minima. With the introduction of
umbrella sampling came the idea that perhaps one should
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aim for uniform sampling of some other property.7 This idea
is probably best known from the multicanonical approach.8,9

Here, one uses an initial simulation to obtain weights which
can then be used for a single long simulation afterwards.
The ideas have been generalized and applied in many
ensembles10–14 and to ever larger systems.15–18

In a related method, the so-called Wang-Landau scheme,
a different recursion was proposed for obtaining the density
of states of a system and perhaps using this as the basis for
the weighting in a single longer simulation.4,5 The idea is that
the density of states can be estimated quite directly from a
simulation where the acceptance criterion is explicitly based
on the history of visiting different energy levels. This method
has been applied in various contexts, ranging from random
spin models19 and quantum systems20 to simple models for
proteins.21 Despite the advantages, it can still be difficult to
obtain a reliable density of states with the Wang-Landau
method. For example, it has not yet been proven if the Wang-
Landau recursion necessarily leads to the true density of
states or if a subsequent conventional Monte Carlo simula-
tion is necessary for consistency reasons.3 Furthermore, the
general problem may remain that it is difficult to obtain suf-
ficient sampling of a system’s low energy configurations.22,23

These configurations are both relevant to real world tempera-
tures and essential for convergence of the approach. This is
the issue with which this work is concerned. Can one simply
speed up the convergence for the initial step of a Wang-
Landau calculation?

The approach used here is to apply a general and con-
trollable method for smoothing a potential-energy surface.
On this surface, one begins a standard Wang-Landau calcu-
lation to provide a crude, but well-sampled initial estimate of

the density of states. In a second step, one restores the true
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surface and continues to improve the estimation of the den-
sity of states. Effectively, the initial simulation serves a seed-
ing for a conventional calculation. Intuitively, it is hard to
imagine the method producing worse results than a conven-
tional Wang-Landau simulation since even a crude estimate
of the density of states should be better than the normal
initialization, g�E�=1.

Within the scope of this paper, we are solely concerned
with the estimation of the density of states and not their
application afterwards. This means that we first consider a
simple system where one can compare with analytical results
before moving to a very idealized model of a protein. It also
means that we judge the results in terms of the conventional
Wang-Landau convergence criteria and not by a simulation
of the system using the implied weights.

II. METHODOLOGY

A. Wang-Landau method

In the Wang-Landau method,4,5 the probability Pacc of
accepting a move from an energy level E1 to a new trial level
E2 is given by

Pacc�E1 → E2� = min�1,
g�E1�
g�E2�

� , �2�

where g�E� denotes the current estimate of the density of
states for the system. As a consequence of the criterion, a
“flat” histogram of energies, H�E�, is generated. Before run-
ning the simulation, an energy range is specified and dis-
cretized into bins, and the initial density of states of the
system is set to a uniform arbitrary value, e.g., g�E�=1. As
the simulation progresses, the density of states is updated
according to g�E�→ fg�E�, where f is a convergence factor
and g�E� is the density of states of the current or trial state,
depending on if a trial configuration is rejected or accepted.
Every time g�E� is modified, the histogram of energies H�E�
is also updated. If all energy levels are about equally
well sampled, the histogram becomes flat, defined as
H�E� / �H�E���s for all values of E and where s
=0.8�H�E�� is a typical value. Once this flatness criterion for
the histogram is satisfied, the value of the convergence factor
f is modified such that it is monotonically decreasing, e.g.,
fnew=	fold. The histogram of energies is then set to zero, and
the procedure is repeated with the updated convergence fac-
tor f used to modify g�E�. The process is repeated until the
value of f reaches a predefined value f final. In this work, we
used initial values of f =exp�100� and f final=exp�10−8� for the
convergence criterion.

B. Generalized effective potential

To define a smoothed energy landscape, several ap-
proaches have been suggested.16 Recently, a method based
on the Tsallis statistic24 was proposed by Andicioaei and
Straub25,26 and has been shown to be quite efficient in bio-
molecular simulations.27–29 In this approach, the potential en-

ergy surface �PES� can be made arbitrarily flat by defining a
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generalized effective potential Vq�x�, which is obtained by
applying a simple analytical transformation to the original
potential-energy function V�x� through

Vq�x� =
q

��q − 1�
ln�1 + ��q − 1��V�x� + ��� . �3�

Here, � is a constant that shifts the base line of the deformed
energy surface and the smoothness of the PES is controlled
by the parameter q�1. That is, the potential becomes
smoother as the value of q increases and for q→1, Vq�x�
=Vq�x�+�. In this work, we set �=0 and measure the energy
in units of kT, i.e., E=�V. This yields

Eq�x� =
q

�q − 1�
ln�1 + �q − 1�E�x�� , �4�

showing that the smoothness of the PES is controlled by the
single parameter 1−q, which in this work ranges between
10−3 and 10−2.

As an illustrative example, Fig. 1 shows the double-well
potential defined below in Eq. �7� and its smoothed versions
for q=1.0025 and 1.05. It is seen that transformation �4�
essentially reduces the barriers of the PES, while the posi-
tions of local minima and maxima remain unchanged. As a
consequence, it may be expected that the density of states of
the smoothed system is qualitatively similar to its real coun-
terpart. By making the potential flatter, however, the position
range, required to cover a given energy interval, increases.
For example, to cover energies up to 100, the original
�q=1� potential-energy curve requires a range of −3�x�4,
while for q=1.0025 this range increases to −9�x�9 and
much larger for q=1.05. As a Monte Carlo sampling obvi-

FIG. 1. �Color online� �a� Potential-energy curve of the double-well model
�Eq. �7��. Compared are the original potential �q=1, black solid line� and
smoothed potentials obtained for the smoothness parameters q=1.0025
�green dashed line� and q=1.05 �red dotted line�. �b� Density of states for a
system of four particles, each modeled by the double-well potential. Com-
pared are standard �black solid line� and seeded �green dashed line� Wang-
Landau simulations.
ously becomes more time consuming with increasing x range
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to cover, Fig. 1 also serves to indicate a practical consider-
ation in choosing the smoothness parameter q. That is, q
should be large enough to allow for an efficient sampling of
the overall PES and, at the same time, as small as possible to
keep the x range small. From this explanation, it is clear that
the optimal choice of the smoothness parameter will depend
on the system under consideration. For the considered
double-well potential, the choice of q=1.0025 appears to be
a reasonable compromise that was chosen in the calculations
of the density of states described below.

C. Seeding of Wang-Landau simulations

As explained in the Introduction, we wish to combine
the PES smoothing and the Wang-Landau method in the fol-
lowing way: �i� First, Wang-Landau simulations on a
smoothed PES are performed which provide an overall yet
rough estimate for the density of states. �ii� Employing the
original potential, this estimate is used as a seed for subse-
quent Wang-Landau simulations which provide accurate re-
sults for the density of states.

It is important to note that the simulations on the
smoothed PES need not run so long that the density of states
converges. Since the seeding simulations are supposed to
yield a well-sampled but rough estimate for the density of
states, the simulations on the smoothed PES can be stopped
once the density of states exhibits the typical overall increase
with energy. For the systems under consideration, the seed-
ing simulations were usually run until the convergence factor
f was rescaled about ten times. Extending the seeding simu-
lations for longer times hardly improves the convergence of
the subsequent Wang-Landau simulations. On the other hand,
stopping the seeding simulation after only a few rescalings of
f , the subsequent Wang-Landau simulations took almost as
long to converge as for standard unseeded calculations. Apart
from the smoothness variable q, the proposed procedure
therefore introduces a second system-dependent parameter,
which needs to be determined. However, since in practice the
effort of the seeding calculations is negligible compared with
the second part of the procedure, the number of rescalings in
the seeding calculations is not critical.

To give a better idea of typical performance of the pro-
posed method, we conducted 100 independent simulations
with different random number seeds. In the discussion below
we are mainly concerned with the average of the logarithm
of the density of states, which is given by

�ln�g�E��� =
1

n


i=1

n

�ln�gi�E�� + Ci� . �5�

Because the Wang-Landau method determines the density of
states only up to a multiplicative constant, the gi�E� of each
individual run needs to be shifted by a constant Ci. To deter-
mine these constants, we define the corresponding statistical

22,23
error of ln g as
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� = 

l



i=1

n �ln�gi�El�� + Ci −
1

n


j=1

n

�ln�gj�El�� + Cj��2

, �6�

where the index l labels energy states El. Setting C1=0 and
minimizing the total variance � with respect to the Ci, the
constants are readily obtained.

III. RESULTS

A. Noninteracting particles model

As a first simple model system, we consider a model of
four noninteracting particles, each modeled by a one-
dimensional double-well potential of the form

E�x� = x2 − 100e−10�x + 2�2
− 50e−3�x − 2�2

− 45e−3�x − 3�2
+ 90. �7�

As shown in Fig. 1�a�, the parameters have been chosen such
that the potential comprises a narrow deep minimum as well
as a shallow higher-lying minimum. As a consequence of the
shape of the potential energy, the density of states of the
system is expected to rise in a nonuniform way. Also shown
is the generalized effective potential for the smoothness pa-
rameter q=1.0025, for which the seeding calculations have
been performed. All simulations used 150 histogram bins of
equal width and a histogram flatness criterion of 80%.

For this system, Fig. 1�b� shows a comparison of the
density of states obtained from a standard and a seeded
Wang-Landau simulation. While both calculations essentially
agree with each other, the seeded calculations were faster by
a factor of about 2. That is, the unseeded simulations re-
quired on average �5.9±1��107 trial moves to converge,
while the average number of trial moves for the simulations
on the smoothed PES was �2.2±0.2��106 and the subse-
quent seeded simulations required �2.9±0.9��107 trial
moves.

As a supposedly even simpler model, we next consider a
four-particle model using noninteracting harmonic oscillators
with potential energy E�x�= 1

2x2. Since a harmonic potential
only exhibits a single minimum, it represents a somewhat
pathological case for a method designed for rugged PES.
This is reflected in the fact that only a very small smoothness
parameter q=1.0005 proved advantageous for the harmonic
model. Using 50 histogram bins of equal width and a histo-
gram flatness criterion of 80%, Fig. 2�a� shows a comparison
of the density of states obtained from a standard and a seeded
Wang-Landau simulation. Again, both calculations essen-
tially agree with each other. Moreover, the seeded calcula-
tions were still faster by a factor of about 2. Remarkably, the
proposed computational approach is still advantageous, al-
though an obviously unfavorable problem was chosen.

Since the density of states of an N-dimensional harmonic
system is available in analytical form �g�E��EN−1�, the har-
monic model may readily be employed to study the effect of
the histogram flatness criterion in Wang-Landau simulations.
To this end, we performed two additional simulations using
the same conditions, but with the histogram flatness criterion
set to 60% or 95% for both the seeding and subsequent

Wang-Landau simulations. Figure 2�b� compares the thus
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obtained density of states with the histogram flatness criteria
of 60%, 80%, and 95% with the exact analytical result. Gen-
erally speaking, by requiring a flatter histogram one expects
a higher accuracy of the calculation, albeit at the cost of a
longer computation time. As might be expected, the agree-
ment using a 95% flatness criterion is excellent. While at
60% flatness the deviation from the analytical result is sig-
nificant; the results are quite adequate at 80% flatness, which
is the value also suggested by Wang and Landau.4

B. Protein model

Finally, we consider a Gō-type model30 of a 20-amino-
acid protein, whose structure was taken from the protein data
bank31 �pdb code 1APM �Ref. 32��. The main properties of
this very simple model are that �i� the protein is a chain of
particles, each centered at the C� position and representing a
whole residue and �ii� inter-residue interactions are described
by harmonic terms centered at the native configuration. The
potential energy of the model can be written as

E�d� = 

i=1

N−1



j�i

N

�Eij
I �d� + Eij

NI�d�� , �8�

where Eij
I �d� denotes the potential felt by two residues that

are regarded as interacting in the native state. It is given by

Eij
I �d� = kI�dij − dij

�0��2, �9�

where kI represents the force constant of the interaction, d
= �dij� represents the distances between residues i and j at a
given step of the simulation, and dij

�0� is the native-state dis-
tance between those two residues. In order to prevent na-
tively noninteracting residues from coming too close to each

FIG. 2. �Color online� The density of states of a harmonic four-particle
model. �a� Comparison of standard �black solid line� and seeded �green
dashed line� Wang-Landau simulations. �b� Seeded simulations using flat-
ness criteria of 60% �blue dashed dotted line�, 80% �green dashed line�, and
95% �red dotted line� are compared with exact analytical results �black solid
line�.
other during the simulation, the second term
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Eij
NI�d� = 
kNI�dij − dij

�0��2, dij 	 dC

0, dij 
 dC
� �10�

introduces a repulsion between the two residues whenever
their distance becomes smaller than a cutoff radius dC. The
parameters of the present model are dC=6.4 Å, kI=1.0 Å−2,
and kNI=0.2 Å−2. Despite its simplicity, the Gō model gives
rise to a complicated energy landscape with numerous local
minima.30

To generate the generalized effective potential for the Gō
model, a smoothness parameter q=1.01 was employed. The
energy range was discretized into 50 energy bins of equal
width and the criterion for histogram flatness was set to 80%.
Comparing again standard and seeded Wang-Landau simula-
tions, Fig. 3 shows the results of the density of states for the
protein model. Being in perfect agreement, the seeded and
unseeded simulations required on average �5.9±4��106 and
�16.6±2��106 trial moves, respectively, thus resulting in
roughly a threefold speedup.

To study the performance of the proposed method in
more detail, it is instructive to consider the convergence be-

FIG. 4. �Color online� Convergence behavior of the standard �black solid
line� and seeded �green dashed line� Wang-Landau simulations as obtained
for the protein model. Shown are �a� the convergence factor ln f and �b� the

FIG. 3. �Color online� The density of states for a Gō model of a 20 residue
protein. Compared are standard �black solid line� and seeded �green dashed
line� Wang-Landau simulations.
statistical error � of ln g�E� as defined in Eq. �6�.
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havior of the seeded and unseeded simulations. To this end,
we consider the convergence factor f of the Wang-Landau
simulation as well as the statistical error of the density of
states, defined in Eq. �6�. Using the protein model as a rep-
resentative example, Fig. 4�a� shows the logarithm of f ver-
sus the average number of trial moves. Each marked point
shows the time �in terms of the number of trial moves� when
the convergence factor was rescaled. While initially seeded
and unseeded simulations rescaled f quite similarly, at later
times the seeded simulations become more efficient and con-
verge clearly faster than their unseeded counterpart. The dif-
ference is even more significant for the mean statistical error
�see Fig. 4�b��, which is seen to decrease rapidly as the num-
ber of trial moves increases. That is, the seeded simulations
clearly converge faster and with higher accuracy. We note in
passing that according to Fig. 4�b� the last 50% of the cal-
culation did not help to improve the accuracy, despite addi-
tional rescaling of the convergence factor f . This well-known
shortcoming of �both seeded and unseeded� Wang-Landau
simulations has given rise to the development of improved
variants of the Wang-Landau algorithm.23

In practical applications, of course, only a single calcu-
lation of the density of states rather than an average over
several simulations is performed. Apart from the average
convergence behavior discussed above, it is therefore of in-
terest to consider the convergence of the individual simula-
tions. To this end, Fig. 5 displays the total number of trial
moves of all simulations. While the seeded simulations con-
verge always faster than the unseeded ones, it interesting that
the unseeded calculations show a much larger variance of the
number of trial moves. It seems that without the seeding, the
system spends much time stuck in energy bins which are
difficult to emerge from. As a consequence, in numerous
cases, the difference in efficiency of the two methods is
about an order of magnitude.

IV. CONCLUSIONS

In order to calculate the density of states for a continu-
ous system, we have proposed the use of a smoothed PES to
obtain a seeded estimate for subsequent Wang-Landau simu-
lations. For all the systems considered, a suitably seeded
simulation converged significantly faster and with higher ac-

FIG. 5. �Color online� Number of trial moves required for 100 statistically
independent Wang-Landau simulations, comparing again standard �black
dots� and seeded �green squares� calculations for the protein model. The
lines only serve as a guide for the eyes.
curacy than the standard procedure. Because of the simple
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generalized effective potential for the seeding calculations,
the method is general as well as very easy to implement.

Since the performance of Monte Carlo calculations may
be sensitive to the details of the simulation, we have dis-
cussed the parameter dependence of the proposed approach.
First, just as in the standard Wang-Landau method, the range
and binning of the energy levels need to be fixed. This choice
certainly depends on the system under consideration. On the
other hand, the choice of the histogram flatness criterion
seems to be fairly generic. Although it was only plotted for
the harmonic model, we found for all three systems that a
flatness criterion higher than 80% hardly leads to a signifi-
cant improvement of the accuracy. For the seeding calcula-
tions two more parameters need to be chosen. The number of
required rescalings of the convergence factor f �typically 10�
assures that the seeding calculations provide an overall yet
rough estimate of the density of states. Because of the neg-
ligible overall cost of the seeding calculations, the exact
choice of this number is not critical. Finally, the value of the
smoothness parameter q needs to be fixed such that q is large
enough to allow for an efficient sampling of the overall PES
and, at the same time, as small as possible to keep the x
range small in the Monte Carlo calculations.

There are also possible improvements to the approach.
The smoothing procedure chosen in this work is quite crude,
in that we move in a single step from a deformed �q�1� to
the original �q=1� PES. Alternatively, one could employ an
annealing procedure which gradually decreases q. This
would make the initial guess of the smoothness parameter q
less critical. In this work, we chose the Tsallis statistic ap-
proach to smooth the potential-energy surface, because of its
generality and the fact that it preserves the location of ener-
getic minima. One could, of course, smooth an energy sur-
face using ideas such as the diffusion equation method,33,34

possibly augmented with soft-core terms.35

Once one is content with the performance of the method,
there are several applications and extensions. Firstly, one
should note that if the density of states estimate is only used
to obtain a weighting in a subsequent simulation, then it need
not be perfect.36 One could use the quick, imperfect estimate
of the density of states from a smoothed PES to generate
better weights for a longer simulation. Unfortunately, for
large or complex systems, it is difficult to know in advance
just how crude the crude estimate of the density of states is.
Continuing in this vein, one may note that there are several
ways to obtain the weights for a multicanonical ensemble or
one of the related methods. These techniques also have rather
poor initialization conditions, so they should, in principle,
also benefit from a seeding procedure. Without implementing
all the possibilities, one should not speculate too much about
the success. Some reports suggest that different generalized
ensemble approaches have similar performance,37 but that
the convergence properties may be very different.38,39

As described, the methodology appears useful, but it will
benefit from experience with more realistic systems. Ulti-
mately, one would like recipes for methods which are fast,
generally applicable, do not sacrifice accuracy, and are easy

to use.
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