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For low-resolution force field calculations on proteins, one needs a method to automatically identify weak structural
similarities in different molecules. A method is presented which treats sets of three-dimensional coordinates as
graphs, and generates a similarity matrix based on local clique matching density that is searched by dynamic
programming to identify similarities in the original structures. The method meets the minimal requirements that it
works with protein molecules of different sizes and works with gaps and insertions. Examples are given where
similarities between protein structures have been detected, despite no similarity being detectable by simple

inspection.
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Introduction

Molecular modelling is a broad term. To a quantum chemist,
it may mean debating fractions of an angstrom, but to a
polymer physicist, it could mean guessing a system’s typical
radius of gyration, if only to the nearest hundred angstrom.
At some intermediate level of detail, one may find low-
resolution protein calculations. In these, the coordinates of
some atoms may be known to within a few angstroms while
others are known with extremely little certainty. Typically,
such models are built using a mixture of coarse-grained
molecular mechanics and deduction from evolutionary
relations. To a molecular biologist, this kind of low-
resolution structure may be quite useful. If it correctly
predicts which parts of a molecule are solvent exposed or
candidates for interacting with other molecules, it may be
sufficient to guide site-directed mutagenesis work. In some
cases, this rough model may be sufficient to identify
chemically characteristic conformations—allowing the
further deduction of biochemical properties, and even
suggesting a lead for rational drug design. However, such
feats typically require a combination of extensive experience,
and a source of reliable structural data. Therefore, at the very
least, one must be able to judge the quality of such models,
before initiating a costly investigation based on potentially
incorrect data.

For molecular mechanics calculations there are standard
methods for dealing with low-resolution representations. In
protein or polymer simulations one often works with “united
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atoms’ where a single interaction site represents several
particles. This is perhaps because such a reduced
representation is sufficient for the model of behaviour, but is
most commonly due to the size of these systems. However,
when relating these results to those in other areas, new
problems can arise. Specifically in the case of proteins, one
often works with the concept of a protein fold, which refers
to some overall shape and arrangement of the backbone of
the polymer chain. This may be meaningful to a molecular
biologist, but seems too indistinct for numerical work. A
rigorous definition is elusive because a group of molecules
with a common fold that can be readily categorized by an
expert usually contains a variety of different sized proteins.
With such ambiguity, it is unsurprising that the various
structure classification methods are not in accord.!!! It seems
clear that this disagreement can only be resolved by a more
complete understanding of protein similarity, but this is not
simply to satisfy scientific pedantry. Determination of the
type of structure (fold) a sequence is most likely to adopt in
vivo is a common goal of computational chemistry,?! and a
key to the interpretation of the mass of sequence data
currently being produced by genomic programs.

In order to work with protein folds and their prediction,
one needs measures of similarity between proteins. These are
used to build parameterization sets that can facilitate fold
prediction, and to measure the similarity of predictions to
known answers enabling the assessment of their reliability.
Any method for determining this measure must be able to
compare proteins of different sizes, and detect weak
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1c9kB

Fig. 1.
three structural domains. The full structures are shown above the labels, and the common cores are shown below.
Schematics produced with MOLSCRIPT.P!

similarities when only parts of either molecule have any
resemblance. Worse than that, the similar regions of proteins
may not even be continuous in terms of the protein backbone.
In this paper, we present a method that can deal with these
problems and automatically locate similar regions in
otherwise dissimilar structures.

To see the severity of the problem, consider the pair of
structures shown in Fig. 1. As shown, the similarity
between the two proteins is clear, but a human expert may
have problems identifying it if the coordinates were not
oriented and the similar regions highlighted. From the
viewpoint of automatic methods, it is easy to see why the
problem is so difficult. If one were to stretch out each
polymer/protein chain as shown in Fig. 2, the similar

protein 1

protein 2

Fig. 2. Diagram of two protein chains after structural alignment.
Each broken arrow represents a protein chain. The thick regions
show where structural similarity is found.

A comparison of two proteins: the ‘B’ chains of 1c9k, a guanylyl transferase, and 1sky, an ATP synthase with

regions could only be found by introducing gaps in the
backbone chains. If one is willing to introduce gaps of any
length at any position in either protein, the search space
grows astronomically. This leads to another complication.
If one inserts a huge number of gaps it becomes easier to
find matching regions. At the same time, the intervening
segments become very small and eventually structurally
meaningless. For this reason, one has to introduce the idea
of a gap penalty or cost associated with introducing a
break into one of the chains, allowing the formulation of a
numerical optimization problem.

Although the most general case of different object
comparison may be intractable, there are many useful
heuristics in common use. None may be guaranteed to give
optimal answers or work in every case. All will have some
arbitrary thresholds. First, one can take advantage of
regularities in protein structure to simplify the problem.
Practically all approaches start from the fact that proteins are
unbranched polymers formed from a set of standard
monomers, so the chain may be adequately characterized by
the set of C* atoms (one per monomer). A much more gross
simplification may be achieved by noting that the protein
backbone includes large stretches of characteristic local
structure known as a-helices or B-strands. At low resolution,
one is not interested in the detailed difference between a
helix in protein 1 or protein 2, so comparison methods often
treat these local or secondary structures as basic motifs.



Comparing Objects of Different Sizes: Treating Proteins as Strings

Currently, a large number of different approaches exist for
the detection of protein similarity.) The task in protein
comparison is to find a representation which allows rapid
location of characteristic units, regardless of their environ-
ment.”) If one is content to work at the level of major
secondary structure units, it may be possible to attempt
something close to an exhaustive search of the similarities
between the arrangement of such units.[%! Alternatively, one
could move one protein over another, one monomer at a time,
calculating some similarity measure at each step. This may
provide a very non-optimal gapless alignment to serve as a
seed alignment into which gaps could be introduced.”’ A
more elaborate approach would be to calculate the intra-
distance matrix for the C* atoms of each protein, and then
use a limited systematic approach to find one distance matrix
in the other. This can again serve as the seed alignment for a
refinement step, which would allow for gaps and chain
breaks.[*!

Looking at Fig. 2, it may seem possible to try some
dynamic programming approach to align the two strands.
The difficulty is that aligning a part of protein 1 assumes one
has already aligned the rest of protein 1 (since one wants to
preserve intra-structural relationships). At some computa-
tional cost, it is possible to use a two-level (double) dynamic
programming approach to find the optimum local alignment
at each site. This is an approximation, but can be tuned to
work well in practice.’!% The idea, however, suggests a
different simplification which is pursued in this work.

If each protein could be represented as a characteristic
string, the problem could be solved with a guaranteed
optimal answer. Consider the strings shown in Fig. 3—
clearly, an ‘a’ matches an ‘a’, and a ‘d’ matches a ‘d’. This
kind of string alignment problem can be solved using a
dynamic programming method, in the most general case, in
O(rn?) time!" or with a slight restriction in O(n?) time.[']
These string comparison methods are standard practice in
protein sequence comparison, but comparing protein
structures is a different problem. One could draw a protein as
a linear chain, but this would not capture the three-
dimensional aspect of the problem. One cannot compare an
‘a’ in one protein to a site in another protein. The structure
does not depend on ‘a’, but on its relationship to the rest of
the molecule. The analogy with sequence/string comparison
does, however, suggest a tractable approach. If one had
special symbols representing the patterns of interaction
between sites of a protein, a matrix of site similarities could
be constructed based on the result of the comparison of each
symbol in the characteristic sets of two proteins. This matrix
is essentially the same as one generated in the process of
string alignment, thus dynamic programming can be used to
find an optimum solution. If the function to measure the
similarity between symbols can be defined, then one has a

A A b ¢ - b a d g R s a d c proteinl

A A b x a b a d - - - a b c protin2

Fig. 3. Alignment of two text strings.
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method to align any two protein structures, regardless of
differences in size or the extent of the similarity.

One approach to defining such a symbol set is to consider
chemical properties at each site. For example, each residue
can be labelled with numbers quantifying the amount of side
chain exposed to the solvent, the local secondary structure,
or participation in hydrogen bonds.['>!*! In this work, we
attempt a purely geometric approach, in the spirit of
Gardiner et al.!!>] First, each protein is converted into a graph
representation where each vertex is a C* atom. The edges
between the vertices are labelled with the distance between
atoms, but also with a set of four other numbers that
characterize the local geometry and how the local geometry
between the pair of C* atoms is related. A first step of data
reduction is applied by removing all edges exceeding a
distance cutoff and locating each clique (fully connected
subgraph) within each protein. Effectively, each vertex (site
in a protein) is characterized by the cliques in which it
participates, but it is the cliques themselves which form the
characteristic set of symbols. The symbols are compared by
determining their maximum common substructure and the
abundance of other similar structure. We then find the
longest, most similar regions of the two proteins by dynamic
programming.

Graphical Representation of Molecular Structure

A protein fold is the characteristic three-dimensional (3D)
shape defined by the path of the polypeptide through space
and passing through the C% of each residue. The local
geometry at residue i is simply described by the unit vector
tangent ?) and normal (rf> ) of the path at the i residue
C* If p;” is a vector from C%_, to C%, then:

S _PitPug

p=2 (1
‘pi + Dy

ni — pi+1 _& (2)
‘Pi+1 _Pi‘

The vectors at either end of the chain are defined as the
corresponding adjacent tangents and normals. Each C” site
in the fold is characterized by pairwise contacts to other C*
near in space, within 10 A. A pairwise contact between the
i and jM residue (i<j) is characterized by the contact
distance dj, and the relative local backbone geometry
between the sites. To define this, we take a unit vector from

the coordinate of i and j:

—_LiTh )
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The relative orientation is then characterized by the products:

Oy = 2 el

Ot = )
owb = - i el

Ojjmp = T8

where the subscripts ¢ and » refer to products involving the
tangent or normal vector and the vector of the contact, and f
or b imply the direction (forwards or backwards) with respect
to sequence ordering.

The structural features we have described are
conveniently represented by a labelled, undirected graph. A
graph G(V,E) is a pair of sets: the vertices, V, represent the
set of C* atoms and edges, E, are a set of unordered vertex
pairs, which represent the network of pairwise contacts. Each
pair (¢) is labelled with d;; and the four scalars (0,5 05
Oy nps 037, ») from (4), and may appear only once in E.

We now define the basic requirement for structural
comparison, a definition of similarity between two pairwise
contacts, as represented by edges. The labels for the edge
between i and j are collected into a set:

€ =i 0y Oy Oy O b ©)

Therefore, one can apply a boolean function foqu(€;, €x)
to a pair of these label sets, using two arbitrary scalar

tolerances D,,;and O,,:

s Otol
= Otol
s Otol

Oiinb ~ Opinp| S O
dy —dy| <Dy,

Oijar ~ Oty

Oijnf ~ Okinf

1 Oiitb ~ Okih

(6)

feqiv (eij ’ ekl) =

10 otherwise

Graphs, Subgraphs, and Common Subgraphs

A subgraph is a subset of vertices and edges contained in
another graph. A subset of vertices is said to induce a
subgraph, where the edge set is all edges covering the subset
of vertices. A partial subgraph is the graph formed from a
specified subset of the edges induced from a vertex set. If
every vertex is connected to every other vertex, the graph is
a clique. Cliques are graphs of maximal edge density, and not
contained by any other larger clique.

If there exists a pairwise mapping between the vertex sets
of two graphs which transforms a subset of the edges to some
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set of equivalent edges (under a criterion for label
equivalence), the set of transformed vertices and conserved
edges are called a common subgraph. The largest common
subgraph is the maximum common subgraph (MCS). If the
MCS contains all the edges of both graphs, then the graphs
are isomorphic. There are often different mappings of the
same subset of vertices which define the same common
subgraph. The set formed by these distinct alternative
mappings is the automorphism set of the subgraph, the set of
vertex permutations that leave the edge set of a graph
unchanged.

A Methodology for the Comparison of Two Protein Graphs

We have adapted an existing methodology, originally applied
to object recognition for computer vision by Barrow and
Burstall,!'®! which transforms the MCS problem to one of
finding cliques in a correspondence graph (CG). Fig. 4
demonstrates the CG derived from two-edge labelled,
isomorphic graphs. The vertex set of the CG is the cartesian
product of the vertex sets of the two parent graphs. A pair of
parent nodes labels each node, so the vertex set contains all
possible vertex equivalences. The edge set in the CG is
constructed by connecting a pair of node mappings only if the
edges between the mapped nodes in their respective graphs

Vertex
mappings
60

e;=faorborc} e, ={aorborc}

VLX Vg = Vee

Edge Equivalence
€kl and e(/-k)(ﬂ)exist
only ife;= ey

v
Geg

8
®

‘T
ool

Fig. 4. A simple correspondence graph. In this example, G; and Gy
are edge-labelled (a, b, and ¢) isomorphic graphs. The graphs possess
only one edge label preserving automorphism, and the MCS mapping
corresponds the identically numbered vertices. G is the CG. The
subset of vertices in Ggg, that map all the nodes of Gy and Gy
correctly, induce a subgraph (outlined by grey dashes) isomorphic to
the MCS. Because the MCS is connected, the mapping is part of the
largest region of connected structure in G, which also contains the
next largest subgraph isomorphism.
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966
0806

@




Comparing Objects of Different Sizes: Treating Proteins as Strings

are considered to be similar. In this way, the nodes represent
the search space of any MCS algorithm, and the edge
connectivity represents the union of all common subgraphs.
Traditionally, a clique enumeration algorithm is used to
locate possible MCS fragments within the CG. The
generation of a solution then requires the selection of the
maximum subgraph mapping from the union of these cliques.

The boolean function (6) is used to select similar edges
from protein graphs. This is a more relaxed label equivalence
than the one in Fig. 4, so there are considerably more, locally
similar, subgraph mappings which must be filtered. In this
case, exhaustive enumeration quickly becomes impractical
because the search space grows almost factorially. Some
dramatic improvements can be gained from applying
heuristic constraints to the search.l'’l Alternatively, one
could form a continuous optimization problem.!'®] However,
constraints are often based on an assumption of the particular
form of the common subgraph, and any representation of the
CG is still demanding to store and search for the comparison
of very large, sparse graphs.

Because of this, a pragmatic heuristic has been employed.
One of the parent (protein) graphs (Gy), is broken up into its
component cliques.!'” The CG can then be decomposed into
corresponding ‘slices’, and more efficiently searched for the
largest cliques only.l'>2%1 Finally, a scoring is applied to each
clique in a slice of the CG, based on the density of edges and
their geometric similarity, as defined in the next section.
These scores are accumulated over the set of CG vertices for
each clique. The summed scores for each CG vertex directly
constitute an element s;- of the similarity matrix S, and
represent the similarity of site i in one protein, and site i " in
the second protein. The dynamic programming algorithm!!?!
can then be directly applied to produce an alignment of the
two original structures.

Clique Scoring

This comparison methodology is based upon recognition of
the largest complete set of characterized contacts that are
conserved in the local structure of a protein. However, these
patterns are not unique — there is considerable redundancy
in local monomer interactions. The set of maximal cliques
(M,,) found in any CG slice is an indistinguishable mixture
of chance local similarities, and matches that are
representative of globally similar features. If each maximal
clique (m,,) is assumed to be independent, we may estimate
the global significance of any matched edge in M,, by a ratio
of observed abundance to a deductivean a priori expectation.
The size of the clique, |k,|, which was used to form the CG
slice, and the size of the set of automorphic mappings of the
clique, aut(k,) can provide a crude estimate:

2
“|m,
2

|m, aut(k,)

M,

p(kn’ mn’ 9Mn) s (7)

k

n

n

where we follow Bollobas!?! and use the convention that |K|

refers to the number of vertices in k. The differences between
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the matched interactions provide further information to
discriminate significant similarity. We simply measure this
with the function r(e;; ;-), a scaled sum of the deviation in
local geometry for a pair of edge labels.

3.|d.. —d.,

ij tj|
D

(e

2
tol

+ |0ij,rf _oi'j',rf|+ |0ij,nb =0 b +|0[/1rb - 0if/',rb|

o

|0!‘/1nf Ot ns

tol

®)

The product of (7) and (8) is accumulated in the similarity
matrix for each vertex, over all maximal clique sets. In this
way, we attempt to distinguish between the common local
structure of the molecules, and the more significant long-
range similarities that provide some biochemical insight.

Results and Discussion

The methodology should be fast enough for routine use, but
is currently too computationally demanding for database
searches. Some examples have been selected to show the
performance of the approach. Comparisons were made with
aD,,of 2.5 A and an O, of 0.7. All structures are drawn
diagramatically with o-helices as thick ribbons and B-
strands as thick arrows.

Fig. 1 shows a relatively simple case. Both proteins (1¢9k
chain B and 1sky chain B) are involved in triphosphate
metabolism and a human expert may be able to use this
information to predict a structural similarity. The complete
structures are shown at the top of the figure, and one may see
that the left-hand protein (1c9k) is, to low resolution,
included in the right hand protein (1 sky). This is made
clearer by the bottom pair of pictures with the common core
extracted. It is clear that the B-strands and o-helices are
generally well aligned. The figure also shows an important
property of the methodology. Similarities between structural
elements can be detected, even if there is some distortion of
one molecule. This is important since an internal hinge
motion may lead to large changes in long-range distances.
This can be a problem for methods based on distance matrix
comparison.

Fig. 5 shows a more interesting example based on 2fxb
and 5fdl. Again, the top pictures show the complete proteins
and the bottom shows the extracted common cores. These are
both electron transport proteins with iron sulfide clusters,
which may lead an expert to expect a similarity but with the
complication that 5fdl has two metal clusters. In the bottom
of the figure, one can see that the three large strands in the
centre, as well as the small helix and strand at the bottom, are
conserved. It is also clear that finding this alignment requires
one large gap to be inserted.

This methodology can reveal more about overall
similarities. Fig. 6 shows the similarity matrix for the two
ferredoxins. The glyphs on the axes represent the secondary
structure at each point along the sequences, and the black
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Fig. 5. Two ferrodoxins, 2fxb and 5fdl. The Fe,S, and Fe,S;
clusters are shown as connected point sets. As in Fig. 1, the full
structures are above the labels, while below are the common cores.

J. B. Procter et al.

line running through the matrix from the lower left
corresponds to the alignment in Fig. 5. Vertical and
horizontal segments in the line correspond to extra structure
in 2fxb and 5fdl, respectively. A typical feature of these
matrices are the regions of high similarity that can be seen
parallel with the optimal alignment. They correspond to
fragments of alternative alignments between highly
redundant secondary structure, which is common in many
protein structure comparisons. However, the similarities of
this pair of proteins have a more unusual property, seen by
other workers.'*! If the sequence of one protein were
cyclically permuted at the point marked by an arrow, the
band of similarity to the right of the main band could be
joined to the weaker diagonal lines towards the top left of the
figure. Physically, this is the more correct alignment,
corresponding all the Fe binding points between the two
proteins, and both alignments match the repetitive structure
in common between the two binding sites of 5fdl. In
evolutionary terms, it may well reflect occurrence of events
such as sequence or gene duplication.

The methodology for finding structural similarities
between proteins works well, although it does take a rather
abstract route. First the proteins are converted into graphs,
then sets of cliques. The problem is then cast in terms of the

Ee

Fe FeFe

2fxb . |

Fig. 6.

» Sheet
I Helix
N Turn
Fe Binding 5fd1
[ Fe FerFe FeFeFe Fe |
Contact
» T N » =N T N w00 TN ¢ naom o

Similarity matrix generated for 2fxb and 5fd1. The scales show secondary structure type along each sequence: helical (coil), B-strand

(arrow), B-hairpin (loop), and the location of Fe binding sites generated with SEView.??! The elements are shaded according to increasing vertex
compatibility and the line through the matrix is the alignment in Fig. 5. The large arrow on the left shows the point where the cyclic permutation
of 2fxb begins, resulting in an improved alignment of the residues involved in Fe,S, binding.
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maximal common subgraph problem, and finally trans-
formed to allow the application of a dynamic programming
algorithm. Essentially, we have adapted a non-sequential
comparison approach, to make it practical for the
comparison of larger and sparser graphs, by reducing the
solution to a problem of selecting mappings from a matrix of
similarity scores that is generated between all pairs of
vertices from two graphs.

Our approximation usually gives an appropriate weight to
similar sites in the protein, although along the path of a
solution it can be seen that the weighting is not consistently
high. Sometimes, clearly similar stretches of backbone have
little or no similarity score. The latter must mean that the
pruning criterion is too stringent for some types of fold
similarities, due to cliques formed by sets of local
interactions not always being completely conserved between
structurally similar proteins. This is particularly true for
distant evolutionary homologues—where the local backbone
geometry is not well conserved, but the overall shapes of the
molecules are quite similar. Such a resemblance can be
discovered with a lower resolution characterization of the
molecule, where the arrangement of more than three residues
is taken into account.

The results show that there are some arbitrary thresholds
and the method can be tuned to tolerate more or less similar
regions as one desires. Stronger similarities may be required
for collecting reliable parameterization data, while weaker
similarities may be of interest in interpreting other
calculations or looking for remote biological properties.

Using a graphical representation for structural
characterization allows us to easily extend the formalism.
Lower resolution characterization could be achieved, or we
may include other types of interaction data, such as residue
side-chain interactions, and solvent accessibility. Recently,
Gardiner et al.l**) applied enumerative searching to graphs
that explicitly represent protein surface hydrogen bonding
sites, and found that complementary topologies can be
identified which are involved in protein—protein interactions.

The limiting factor of our decomposition approach is the
density of the graph formed in the representation. Because
we decompose the search at the level of cliques, it would be
quite inefficient to compare large, fully connected graphs
because of the growth properties of the maximal clique
problem. The solution found would also be much more
sparse, because possible solutions are limited to the set
involved in the maximal consistent cliques, which may
preclude many mappings which are part of the MCS.
However, the short-range spatial interpretation does seem to
characterize structural similarity.

A final consideration is the application of dynamic
programming. This method produces classically accepted
alignments and has the usually desirable property that it will
find the longest alignments consistent with the order of
residues in each protein. However, if one is interested in
finding features such as the possible cyclic permutation of
the ferredoxin proteins, one could apply appropriate
heuristics, but at a computational cost. Furthermore, the
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methodological extensions, which allow a search for less
sequential similarities, must necessarily cope with the
problems involved in direct search. Many heuristics, in the
form of assumptions and thresholds, can be applied to
overcome these, but they can only select specific forms of
structural resemblance. It is therefore no surprise that
different protein comparison methods continue to appear and
provide different results.

Conclusions

We have presented one technique for limiting the space of
spatial similarities that must be searched in order to identify
protein structural resemblance. This involved a graph-
theoretic transformation that selects particular mappings,
and a numeric transformation allowing the simplification of
the problem. It may be that the strict, local maximum,
common subgraph property is too stringent for this particular
graphical representation of protein structure, but the results
presented here are sufficient to show its effectiveness.
Finally, given the general nature of the method, the results
suggest that the technique should find wide application in
areas quite removed from protein structure comparison, but
where the entities, which are to be compared, can be
represented as graphs.
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