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ABSTRACT Multiple sequence alignments are
a routine tool in protein fold recognition, but mul-
tiple structure alignments are computationally less
cooperative. This work describes a method for pro-
tein sequence threading and sequence-to-structure
alignments that uses multiple aligned structures,
the aim being to improve models from protein
threading calculations. Sequences are aligned into
a field due to corresponding sites in homologous
proteins. On the basis of a test set of more than 570
protein pairs, the procedure does improve align-
ment quality, although no more than averaging over
sequences. For the force field tested, the benefit of
structure averaging is smaller than that of adding
sequence similarity terms or a contribution from
secondary structure predictions. Although there is
a significant improvement in the quality of sequence-
to-structure alignments, this does not directly trans-
late to an immediate improvement in fold recogni-
tion capability. Proteins 2002;47:496–505.
© 2002 Wiley-Liss, Inc.
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INTRODUCTION

There may be a finite number of protein folds, but even if
this is wrong it is certainly a useful rule. Often, when a
new protein structure is solved it appears similar to one
already in the protein data bank.1,2 This means that, even
in the absence of sequence homology, it is worth trying to
find the most appropriate known structure for some se-
quence of interest.3,4 This philosophy has led to protein
threading becoming one of the most popular methods for
protein structure prediction.5 Implementations vary, but
generally one needs a score or energy function, a method
for aligning the sequence to a trial structure, and some
library of representative protein structures.

In practice, the library is unlikely to contain an ideal
structure for the sequence. Instead, it will have a selection
of proteins that have been declared representative of their
fold types. This, however, may not be ideal because we do
not care about the details of any particular protein. What
one really wants is a set of average structures with
average properties, typical of each family of proteins.
While this is simple to wish for, it is not easy to implement.
The fundamental problem is that protein structures are no
longer protein-like after almost any kind of averaging.
Simply averaging Cartesian coordinates results in struc-
tures with nonphysical bond lengths or unusual angles.

Averaging over internal angles or even in reciprocal space
results in similar problems. In this work, we show how one
can apply averaging over structural information so as to
improve sequence-to-structure alignments. Although the
method is based on structure comparison and alignment,
the averaging is performed over the fields experienced by
test particles. The results are given for our score or energy
function, but the method is applicable to almost any score
function based on pair-wise interaction functions. The test-
ing is concerned with the quality of sequence-to-structure
alignments, but this is important because better align-
ments mean better models and improved fold recognition.

Unlike protein structures, sequences have been rou-
tinely combined, merged, or averaged. Properties from
families have been one of the driving forces for rapid
multiple sequence alignments.6–8 In the field of protein
fold recognition, one of the most popular and successful
methods is purely sequence based. Starting from reliable
sequence homologs, a profile (with averaged properties) is
gradually built up using ever more averaged sequence
information.9–11 Although couched in a different formal-
ism, hidden Markov models are also based on the premise
that a profile can be constructed that somehow averages
over related sequences.12,13 Aside from pure sequence-
based approaches, multiple sequence profiles have been
combined with knowledge-based potential energy schemes
with an apparent improvement in detection of remote
homologs.14 Averaging over sequence properties is now so
accepted that it is an integral part of applications such as
secondary structure prediction.15–20

In contrast, there have been far fewer attempts to use
multiple structures in fold recognition, even though one
would expect them to be just as beneficial as multiple
sequences.21 One approach has been to ignore most of the
sequence-to-structure alignment problem and simply con-
sider ungapped alignments. This is technically easy and
even seems to offer some improvement of fold recogni-
tion.22,23 The approach, however, is of no use if one is
interested in improving sequence-to-structure alignments.

To improve sequence-to-structure alignments with gaps
and insertions, one should consider how the alignments
are calculated. Often, this is done with an adaptation of
the alignment methods commonly used in sequence align-
ment24,25 and these require that each sequence residue be
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given a score at each position in the template structure. It
is these scores that can be readily averaged across corre-
sponding sites in aligned protein structures. This could be
seen as averaging the field experienced by a test particle in
a protein structure, although the test particle would be a
whole amino acid. The approach requires precalculated
structural alignments, but these are tabulated in the
literature.26–32

Because this work is concerned with protein sequence-to-
structure alignments, it requires a measure of alignment
quality. One could compare alignments with some struc-
ture-based superposition, but this would introduce new
problems. Aside from issues of structure comparison meth-
odology, a pair of proteins may not even have a clear,
single optimal superposition. There may be a large num-
ber of different, near-optimal alignments.33,34 The prob-
lem can be completely avoided with test data because one
knows the correct answer for the sequence. Placing a
sequence on a template yields a model for the sequence.
This can simply be compared against the correct answer
(structure) for the sequence. The better an alignment, the
closer the model is to the correct answer. To compare
methods, one does not look at a single pair of proteins. This
work relies on a set of 572 proteins pairs chosen so as to
have some structural similarity. The better a method, the
better the performance, summed over the whole set.
Clearly, this large set of alignments allows one to compare
different methods such as with and without structure
averaging. It also allows one to compare the relative effect
of including extra terms. For example, it may be suspected
that a particular score function will be improved by
including information from secondary structure predic-
tions or adding a term corresponding to sequence similar-
ity between the sequence and template.

With this machinery, one can test values of parameters
in the alignment calculation. For example, one could test
values of gap penalties or the weight applied to some
specific term. This can be taken a step further and the
measure of quality can be used as the basis for some merit
function in a numerical optimization procedure. The sur-
face will not be smooth, so the work below used a mixture
of grid search and simplex optimization. With this ap-
proach, various terms were tested and compared against
structure averaging, but only after optimizing each term’s
contribution.

To test the process of averaging across templates, the
sequence-to-structure alignments were calculated using a
published, freely available code,35 a previously described
alignment methodology,36 and a z-score optimized, pair-
wise score function.37

METHODS
Alignment Methods

Sequence-to-structure alignments were calculated using
the Gotoh method24 rather than the Needleman and
Wunsch25 method previously used.36 Gap penalties were
implemented with conventional costs for gap opening and
widening rather than the more computationally expensive
geometrically based penalties previously described.36

Protein Lists And Test Sets

The calculations involved the use of three lists of pro-
teins or pairs of proteins, each based on structural align-
ments from the FSSP library.27–30 First, alignment param-
eters were optimized on a set of 572 structurally similar
protein pairs. Within each pair, there was 20% or less
sequence identity (within structurally aligned regions)
and at least 70% of the residues of the probe sequence were
structurally aligned. The structural dissimilarity was
bounded, requiring the root mean square (RMS) difference
of coordinates within the aligned regions to be less than
0.6 � RMScut. This crudely accounted for the dependence
of RMS difference on protein size and, following a pub-
lished parameterization,38 was taken as

rmscut � 4.54 � 2.36N res
1⁄3 (1)

where Nres is the number of residues in the alignment.
Second, a structure library was constructed, based on
structural relationships as defined by FSSP z-scores.27–30

A simple hierarchical clustering algorithm was used and a
level of dissimilarity (based on z-scores) chosen so as to
give a final set of 1235 chains. Third, a test set for fold
recognition was generated wherein each member was
guaranteed to have a structural homolog within the li-
brary of 1235 chains. For each member of the fold library,
the corresponding FSSP data was scanned and the first
structural homolog chosen that possessed no more than
20% sequence identity over the structurally aligned re-
gions, an FSSP z-score greater than or equal to 8, and at
least 80% of the residues structurally aligned with the
parent structure. This resulted in a test set of 181 probe
sequences. All lists of proteins are available as supplemen-
tary material.39

Alignment scores were calculated using a neighbor-
nonspecific score function/force field.36 This has the impor-
tant property that the score or quasi-energy experienced
by a residue can be calculated using the coordinates of its
neighbors without requiring the neighbors’ identity to be
known. This may be viewed as an averaging over residue
types, but parameters for the interactions were optimized
directly and not by any postfact averaging. For each
protein template chain, the simple score profile was calcu-
lated by placing each of the 20 amino acid types at every
position and storing each score.

For averaging structure, each of the 1235 members of
the template library was treated as a parent structure.
Related structures were used if the structural alignment
covered 30% or more of the parent template’s residues
(with a minimum of 10) and possessed an RMS difference
less than or equal to 4.5 Å over the aligned regions. These
criteria resulted in the numbers of related structures
varying widely over the set of 1235 parent structures. For
example, 539 structures were used in the average struc-
ture profile for the immunoglobulin, 2cd0, but 107 struc-
tures had no structural homologs meeting the criteria. A
full table with the number of homologs is given as supple-
mentary material.39 The median number of chains used
for an average structure profile was 35 and the averaging
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was performed in a straightforward fashion. For a given
site, there are Nhom aligned chains and the average score
(quasi-energy) Ei(A) for a residue of type A at aligned site i
is simply

Ei�A� �
1

Nhom
�
j�1

Nhom

Ei
j�A�, (2)

where Ei
j(A) is indexed by both site i and protein homolog j.

This was calculated using the neighbor-nonspecific force
field,36 referred to as Effield below. For calculations without
averaging, Nhom � 1.

Score Functions

The main score function was constructed for native fold
recognition on the basis of z-scores 37 and we refer to this
as if it were a force field energy, Effield, and comes from
summing over the Nalign residues that are present in the
final alignment:

Effield � �
i�1

Nalign

Ei. (3)

Contributions (Ess) were also included from secondary
structure predictions, taken from the PredictProtein (PHD)
server,15 where one sums over the Nalign aligned residues
as previously described.40

Ess � � �
i�1

Nalign

�s�pc��cos��0 � �i� � 1��, (4)

where pc is the prediction confidence and s(pc) is a switch-
ing function that returns zero unless the confidence pc is
greater than or equal to 8. In this case, the function
returns 1. �i is the conventional backbone dihedral angle
at template site i and �0 is a literature ideal value for the
secondary structure taken as �0 � �47° for �-helices and
�0 � 124° for �-strands.41

Sequence similarity contributions were implemented
with a quasi-energy term, Eseq, defined as

Eseq � � �
i�1

Nalign

baiai	 (5)

where ai is the type of the amino acid at site i and the
prime denotes the aligned residue, so ai	 is the type of
residue from the aligned template site. bai

ai	 is the element
from a BLOSUM6242 substitution matrix, indexed by the
types of amino acids ai and ai	.

Gaps in alignments were treated with different costs for
opening and widening and based only upon the number of
residues in the gap, but with different penalties used in
the sequence and template. To calculate the penalties, one
needs to know ns_gap and nt_gap, the number of gaps in the
sequence and template, and li, the length of each gap i.
Combining the main force field, gap penalties, secondary
structure predictions, and sequence similarity terms yields

Etot � Effield � ks_openns_gap � ks_wdn �
i�1

ns_gap

�li � 1�

� kt_opennt_gap � kt_wdn �
j�1

nt_gap

�lj � 1� � kssEss � kseqEseq, (6)

where each k term weights the contribution with respect to
Effield. The subscripts s_open, s_wdn, t_open, and t_wdn
refer to sequence gap opening and widening and template
gap opening and widening, respectively.

Multiple Sequence Alignments

This work was intended to test the feasibility of averag-
ing across different structures rather than sequences, but
a crude multiple sequence term was implemented for
comparison with structure averaging. Multiple sequence
alignments based upon BLAST alignments were extracted
from the PHD15 server output. No attempt was made to
include more remote homologs, which could be found with
a more sensitive search method.10 This conservative choice
of sequence homologs also removed potential problems
with the location of gaps in the multiple sequence align-
ment.

Multiple sequence information was used by counting the
amino acid types present at each position of the multiple
sequence alignment and weighting the energy calculation
by the relative proportion of each amino acid type present.
For a sequence position i, one keeps a count, gi

A, of the
number of times residue type A is found in the multiple
sequence alignment. We then say

Ei
j�A� � �

�
A�1

Ntype

gi
AEi

j�A�

�
A�1

Ntype

gi
A

, (7)

where A is a residue of mixed type and the summation
runs over the Ntype � 20 amino acid types. As above, the
superscript j refers to the particular structure or struc-
tural homolog, so the expression Ei

j(A) can be substituted
directly into eq. 2, the expression for the energy of a
residue in a possibly averaged structure. In this formula-
tion, the counting is done over residues actually present in
the multiple sequence alignment, so no advantage is taken
of suggested location of gaps.

Alignment Optimization and Testing

If a sequence is aligned to a template structure, it
produces a model for the sequence. If the correct structure
for the sequence is known, it can be compared against the
predicted model. In these calculations, the aim is to find
the k values in eq. 6 that produce the best models over the
entire test set of 572 protein pairs. This requires a
geometric measure of similarity between the coordinates
of the sequence native structure, r�nat, and the model from
the alignment, r�model. Specifically, we measure the fraction
of the distance matrix that a model has in common with
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the correct structure and call this f(r�nat, r�model). This could
be seen as similar to the Q value often used in modeling
protein folding, which counts the number of native con-
tacts present in a conformation.43,44

First, one calculates the difference between C�-based
distance matrices,45,46 sometimes referred to as the dis-
tance matrix error (DME)47,48:

DMEnat,model � � 2
Nres�Nres � 1� �

i
j

NC�

�rij
nat � rij

model�2�1⁄2

, (8)

where rij
nat is the distance between C�

i and C�
j in the native

structure and r
ij

model is the corresponding distance in the
model. Next, one defines a threshold, DMEcut � 4.0 Å,
bearing in mind the typical C�OC� distance is 3.8 Å. Then
one can discard elements where the two distance matrices
are most different, until DMEnat,model is less than or equal
to DMEcut. The remaining fraction of the distance matrix
is f(r�nat, r�model). In pseudocode, one can describe the
process:

while (DMEnat,model � DMEcut)

{remove largest distance difference from C� distance matrix

recalculate DMEnat,model f�r�nat, r�model)

� fraction of distance difference matrix remaining}

For very similar structures, f(r�nat, r�model) has a value close
to 1. For completely dissimilar structures, it could ap-
proach zero, but rarely lies below 0.5 among compact
structures. In the final merit function, M1, the results
should not be unduly influenced by completely wrong
structures and thus should be weighted toward near
correct structures [where f(r�nat, r�model) is greater than
approximately 0.7]. This was achieved by using a sigmoid-
like switching function that is smooth, but removes the
influence of wrong, essentially random aligned fragments.
The final, sigmoidal merit function for alignment optimiza-
tion was then

M1 � �
i�1

Npair

�1 � eb�a � f �r�nati, r�modeli��� � 1, (9)

where the summation runs over all Npair � 572 protein
pairs. a was set to 0.7 as described above and b � 15 (an
arbitrary decision for the shape of the sigmoid).

In summary, gap and extra parameters were optimized
to produce the best alignments by using a simplex method49

to adjust the k values of eq. 6 so as to maximize the merit of
eq. 9. As there is no guarantee of a cooperative search
space (it may have many local minima), the k values (eq. 6)
were minimized in turn and in combination from many
starting points.

Fold Recognition Parameters

This work is concerned with sequence-to-structure align-
ments, but some calculations were carried out to confirm
that this is useful for protein fold recognition. Because we
use separate force fields for alignments and ranking of

models,36 gap penalties and relative weights of terms were
reoptimized again using a simplex optimization. The merit
function, M1 from eq. 9, had been designed to recognize
good models from alignment. A different merit function
was used for ranking generated models.

In fold recognition, the aim is to find the best structural
homolog for a sequence when that homolog is hidden
within a library of decoy structures. This phrasing as-
sumes one has a library without duplication or errors. A
better way to state the goal is to say that after aligning a
sequence to every member of a library one wishes the best
ranked models to be those most similar to the correct
answer for the sequence. This is the approach used here.
For each of the 572 probe sequences, 1235 models were
generated, stored, and the f(r�nat, r�model) value for each
model then calculated. A switching function was used to
determine if the model was acceptable or not:

u�f�r�nat, r�model�� � 1 if f�r�nat, r�model� � 0.6

� 0 if f�r�nat, r�model� � 0.6. (10)

Then, the merit M2 associated with a set of fold recognition
calculations was

M2 � � �
j�1

Nseq �
i�1

Nlib

��f �r�natij, r�modelij�� ⁄rank ij, (11)

where Nlib � 1235 structures in the protein fold library
and Nseq � 572, the number of probe sequences. The
parameter, rankij, refers to the rank (out of 1235) of model
i for sequence j. The merit function M2 was minimized
using a simplex method and adjusting k values as given by
eq. 6.

Fold Recognition Measurement

The function given above is relatively smooth and suit-
able for optimizing parameters, but maybe not the clearest
way to present results. To compare fold recognition among
the different methods, we counted and plotted the number
of times a sequence was able to find a correct homolog
within a library at first rank, second rank, and so on. The
set of 181 sequences was aligned to the library of 1235
structures as described above. Success was measured by
the number of times a structural homolog was found at
first, second, and successive ranks. As is common in a test
of this kind, no attempt was made to account for sequences
that possessed more than one desirable homolog in the
library and results were only used to compare the relative
performance of different terms.

RESULTS

Comparing results with or without some kind of averag-
ing assumes one has appropriate gap penalties for each
case. Similarly, comparing results with and without a
sequence similarity contribution assumes that the k coeffi-
cients in eq. 6 are set to a correct value. All of the k
parameters were set to, at least, local minima by a mixture
of grid search and simplex optimization. One cannot claim
that any of the parameters are optimal, but it is possible to
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get an impression as to whether they are plausible. Figure
1 shows the final values for the merit function M1 from a
series of simplex optimizations intended to optimize kseq,
the weighting for the sequence similarity term. Some of
the apparent noise near the maximum is due to other
parameters being varied (the figure is a slice through a
higher-dimension optimization), but some points are clear.
The cost surface is not smooth and one cannot guarantee
that this (or any of the parameters) is truly optimal. There
is, however, a range where parameters are likely to be
reasonable. This kind of behavior was found for all gap
penalties and weighting coefficients examined.

Alignment Results

Given a set of reasonable parameter values, one can ask
what are the best results obtainable with and without
structure averaging. Figure 2 shows the best value of the
merit function M1 that was obtained with different contri-
butions. The arbitrary units have the same scale as Figure
1. For comparison, some other results are included and
discussed below.

The simplest comparison shows that averaging over
structure scores offers a bit less than a 10% improvement
over the bare force field [Effield from eq. (6)]. The exact
number is probably not significant as it will depend on the
test set and structures used for averaging. The improve-
ment is partly due to small improvements in all models,
but most significantly represents a large number of models
moving from being completely wrong to substantially
correct.

The merit function is a good indicator of the number of
typical alignment quality, but it is not linear in the
number of correct contacts or any conventional structural
measure. One can, however, get some idea of the signifi-
cance by comparing with other terms or improvements.
The third line on the plot shows the improvement achieved
by multiple sequence alignments, without structure aver-
aging. Strictly, this would suggest that averaging over
sequences is more profitable than averaging over struc-
tures. In practice, the exact size of each improvement will

be dependent on the implementation. The conservative
approach used for multiple sequences may have been
fortuitously successful, despite no attempt being made to
optimize the number or similarity of sequence homologs
used.

Aside from averaging procedures, the results can be
compared with the addition of extra terms to the score
function. The bar in Figure 2 labeled “sec struct” shows the
improvement when secondary structure predictions (Ess

from eq. 4) were added to the bare force fields (Effield from
eq. 3) with no averaging. The improvement seems greater
than that due to any averaging process. This could be a
general phenomenon, but it could be a peculiarity of the
score functions used here. Earlier work has suggested that
these score functions are not good at recognizing correct
local structure.40 If one has a better score or energy
function, one may not see such an improvement upon
adding this data.

Finally, the results should be compared against the
improvement seen by adding a sequence similarity matrix
term, labeled “sim mat” in Figure 2. This appears to be the
single most important term that can be used to improve
the bare force field. The size of the improvement is
surprising because the test set was selected so that no
sequence had more than 20% sequence identity to its
template. At the same time, the results are quite expli-
cable. As kseq is increased, the sequence similarity matrix
term dominates and the method approaches pure sequence
alignment. Because kseq was the subject of Figure 1, we
can see that at extreme values the performance is so poor
that simple sequence comparison would not even be on the
scale of Figure 2. It would seem that the errors due to the
pair-wise, through-space terms are different and, to some
extent, complementary to those due to sequence compari-
son. It is also clear that the careful optimization of each
contribution is important to the final quality of align-
ments.

Given infinite patience, one could try out each possible
combination of terms, but it is useful to know if results
continue to improve when all the methods are combined.
The second last bar of Figure 2 (labeled “single seq all”)
shows single sequences with multiple structures, similar-
ity matrices, and secondary structure. The last bar, la-
beled “mult seq (all),” shows the same but with multiple
sequence alignments. Clearly, there is useful, nonredun-
dant information among the various terms. It also sug-
gests that when all the factors are added together the
difference between single and multiple sequence results is
too small to be seen.

Fold Recognition

This work has shown that averaging over structures can
improve sequence-to-structure alignments and the conse-
quent models from threading calculations. It is, however,
interesting to see if this translates to an improvement in
fold recognition. This is fundamentally a much larger
calculation. Rather than aligning each sequence to a single
template, a sequence must be aligned to each member of a
structure library (with and without averaging). For this

Fig. 1. Optimization of sequence similarity coefficient kseq.
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calculation, each of 181 sequences were aligned to each
member of a library of 1235 structures where the library
was known to contain a structural homolog. The measure
of success is how often a sequence finds its correct struc-
ture, hidden among 1234 decoys, at first rank, second
rank, and so on.

Figure 3 shows this measure, with and without struc-
ture averaging, sequence averaging ,and the individual
score function contributions in turn. Looking at first and
second ranks, the worst performance may come from the
bare, through-space, pair-wise force field, but in this data
there is no detectable improvement from structure averag-
ing. There are two likely reasons for this. First, the

rescoring of models has its own noise or artefacts and this
may obscure the improved scores due to the improved
alignments. Second, the models for correct templates may
be improved but the models for all templates, including
completely inappropriate ones, are also improved, that is,
the alignment procedure may be producing more reason-
able guesses for sequences even from incorrect templates.

Again concentrating on first and second ranks, it does
appear that there is an improvement in fold recognition
from the use of multiple sequences, similarity matrices,
and secondary structure predictions. In the cases of second-
ary structure and similarity matrices, this is readily
explained. These contributions were present in the final

Fig. 2. Alignment performance with different contributions. For each method, the best value of the merit
function M1 from eq. 9 is shown. “No aver” refers to the bare score function, “struct aver” to the introduction of
averaging across similar structures, “mult seq” to the addition of multiple sequence alignments, “sec struct” to
the addition of secondary structure predictions, “sim mat” to the addition of sequence similarity information,
“single seq (all)” to single sequence calculations with the terms from “struct aver,” “sec struct,” and “sim mat,”
and “mult seq (all)” is the same is “single seq (all)” but with multiple sequence alignments.

Fig. 3. Fold recognition performance with structure averaging and additional score terms. Labels are as for
Figure 2.
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score and ranking calculations. In contrast, the averaging
procedures were only used to produce better models.

In these fold recognition results, it seems as if any
improvement due to an individual term is too small to be
clearly seen. In this case, one can ask if one can at least see
the difference between the bare, pair-wise, through-space
term, the effect of structure averaging, and the result of all
terms summed. To see this, one can take the bare force
field line from Figure 3 and plot corresponding lines from
fold recognition calculations, but now including all avail-
able terms simultaneously with structure averaging and
with sequence and structure averaging. Figure 4 shows
these results and some clear trends. Although the effect of
structure averaging on final fold recognition is not signifi-
cant, when one combines all terms the results are dis-
tinctly improved at the first five ranks.

DISCUSSION

The results show that for some score function or energy
term one can improve the quality of protein threading
models by an indirect averaging across related structures.
This averaging over structural properties can be done in a
way that permits gaps and insertions and, in practice,
there is no loss of speed in the calculations. The implemen-
tation used here relies on precalculated scores for amino
acid types on the template structures, so the alignments
are as fast as any profile methods in the literature.50,51

In the case of the score functions used here, the improve-
ment due to structure averaging was smaller than that
from multiple sequence alignments (sequence averaging).
This is probably not a universal result. Not every conceiv-
able parameter was optimized in this work. There are
orders of magnitude more information available for se-
quence alignments than for structure comparisons. Last,
the thresholds for structure alignments are not nearly as
well characterized for structure comparisons as for se-
quence comparisons.

The most important feature of this work may not be the
exact size of any improvement, but rather the transferability
of the principle to other workers’ force fields. The force fields
used here may be “knowledge-based,” but they do not rely on
Boltzmann statistics. Instead, they fall into the class of force
fields built by optimizing parameters for some property such
as z-scores or fold recognition.36,37,47,52–57 In principle, how-
ever, this is not important. If one has a score function and a
method to score a residue type at a position on a template,
then one has the ingredients to average over different
structures. There is no reason this method could not be used
to improve the performance of more common Boltzmann-
based force fields.

It is also possible to see why the method is likely to work
by considering an example. If one takes an example
protein, one can look at the score felt by a typical amino
acid at each position on the template and the process can
be repeated in the structure-averaged case. For example,
Figure 5 shows a calculation for 2cd0. The choice of protein
is arbitrary, but the results are typical. The top plots show
the score experienced by a hydrophobic residue (Trp) along
the template while the bottom shows the results for a
hydrophilic residue (Glu). Not surprisingly, the top and
bottom plots often show opposite trends. A favorable spike
for the hydrophobic residue often appears as a disfavored
site for the Glu on the plot below. This would be expected
from most low-resolution force fields.58 It is, however,
more interesting to see the effect of averaging.

On the left are the plots from the bare, pair-wise score
function while on the right are plots with structure
averaging. The effect is dramatic. First, the vertical scale
is the same on the left and right plots, so the averaging has
removed many of the large spikes. Considering a specific
example, one could look at the Glu propensity without
averaging (lower left) and see a large spike at residue 24.
This means that the scoring function is particularly af-
fected by some arrangement of residues in that region of

Fig. 4. Fold recognition comparison for bare force fields and with all available terms. Labels are as for
Figure 2.
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2cd0. Comparison with the right-hand side shows that the
spike is removed, meaning the feature is really a property
of 2cd0 and not one of the structure family as a whole.

The next question is whether the structure averaging
was too conservative or too profligate. This was only tested
in a cursory manner. The aim was simply to average over
substantial pieces of structure that would provide a simi-
lar environment for a test residue. Most likely, there is no
single correct amount of structure averaging. If one has a
very close sequence/structure pair, averaging is not an
issue. For example, aligning the sequence of 2cd0 to its
own structure may well benefit from the particular spike
in the score profile discussed above. When aligning more
remote homologs, one wants to be less affected by the
peculiarities of individual proteins. This means that the
method would have to be attuned to levels of difficulty to
achieve the best possible results.

The most surprising result is the lack of convincing im-
provement of fold recognition. This could be excused by
claiming that the improvement in model quality from better
alignments is not enough to be seen in the cruder fold
recognition measurements. It may, however, be indicative of

a weakness in the implementation here. The averaging was
only performed at the sequence alignment stage.

Aside from the issue of model quality, the work has some
implications for threading force fields. Other workers have
noted that terms in a score or energy function should be
adjusted with respect to each other and some have offered
titrations of different terms such as secondary structure
predictions or sequence similarity with respect to the core
of the force field.14,59 The work here showed that it is far
more effective to use a full numerical optimization for the
different terms, rather than simply trialing different val-
ues. Most importantly, it is necessary to treat parameters
simultaneously rather than independently. For example,
Figure 1 shows the variation of a merit function as one
coefficient is varied. What is not shown is that other
parameters such as gap penalties had to be simulta-
neously varied to achieve the best results.

Another clear result is that methodology in protein
threading should not be judged merely on the ranking of a
sequence’s homologs. This will hide changes in model
quality and, if alignments change across most of a struc-

Fig. 5. Comparison of scores with and without structure averaging. For the example structure of 2cd0, the plots on the left show the score
experienced by a test residue without structure averaging and the plots on the right with averaging. The top two plots use a Trp residue as the test particle
and the bottom use Glu.
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ture library, it will be a reflection of many simultaneous
changes.

The most disappointing aspect of the results here is the
lack of improvement in fold recognition, despite improved
models from alignment calculation. One could see this as a
confirmation of the fact that the generation and ranking of
models are different tasks with different goals. Taking this
to extremes, one would be satisfied with an alignment
method that produced reasonable models for appropriate
templates and near random alignments for inappropriate
models. One future task will be to assess the extent to
which improved alignments on incorrect templates inter-
fere with recognition of the correct fold and the extent to
which small improvements in models are dwarfed by the
noise within ranking calculations.
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