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Perspectives in protein-fold recognition
Andrew E Torda

Fold recognition force fields based on statistics from native
structures have become commonplace. New, nonphysical
force fields based on optimizing parameters rather than
reflecting Boltzmann statistics may offer improvement in
force-field performance for threading and other applications.
Improvements in sequence-to-structure alignments will also be
essential for improved fold recognition.
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2D two-dimensional
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Introduction
One may well argue that the field of protein-fold
recognition is suffering from an excess of scoring functions
and an overabundance of review articles [1–5]. An
enthusiast, however, may note there are some new ideas
in force-field construction and some new approaches to the
sequence–structure alignment problem.

This review is concerned with protein-structure prediction
for cases in which a target sequence does not have
unambiguous sequence homology to any known structure.
It is also centred on protein-fold recognition as opposed
to ab initio protein-structure prediction. Fold recognition
(usually by threading [6]) means that one has a library
of candidate structures and uses a score function to see
which is the most appropriate for a sequence of interest.
Ab initio probably means one uses any method capable
of generating coordinates for a protein sequence without
relying on a library. This wording is deliberately vague as
search methods include molecular dynamics and Monte
Carlo simulations, genetic algorithms [7,8], hierarchical
methods [9,10] or procedures similar to those used to
generate structures based on NMR data [11,12].

At the heart of almost every method is some kind of
score function or force field, which behaves like potential
energy or perhaps even free energy. Such force fields
often have little fundamental physical basis but come
directly from observations of known protein structures, so
one might prefer to use terms such as structure-derived,
statistical or knowledge-based force fields. More generally,
these are low resolution force fields, as single interaction

sites may represent more than one atom and some recent
constructions do actually have a real physical basis. If one
is limited to protein-fold recognition and forgoes all claim
to physical energies, a more appropriate term is simply
sequence–structure fitness functions.

Such score functions may behave quite differently de-
pending on the method of construction and the intended
application. If a score function is only going to be
challenged with prefolded, compact structures from a
library, then it may not be necessary for it to perform
well on less native-like structures. A function may perform
perfectly when matching sequences to library structures
but produce an absurd answer when applied to a totally
wrong, unfolded structure. This kind of function would
not be very general, but it might be perfectly suited to
fold recognition and threading. If, however, a function
will be used for scoring in ab initio structure prediction, it
may well be challenged with different structures generated
by the search algorithm. In an extreme case, consider a
molecular dynamics or Monte Carlo simulation of infinite
length. These methods are supposed to be ergodic and
may visit (infrequently) conformations that are in no way
protein-like. It is essential that a score function in this
context should penalize these conformations appropriately.
This consideration has practical implications; for example,
most force fields for ab initio structure prediction will
produce a very high energy if two interaction sites (maybe
atoms) lie on top of each other. A fold-recognition force
field may never be confronted with this situation and may
be perfectly adequate with absolutely no excluded volume
or repulsive term.

None of this reasoning forbids the discovery of a reliable
and perfectly general scoring function that works in all
situations. It merely suggests that it might be easier to
construct a function with limited goals; however, this
reasoning does not dissuade many workers and some of
the force fields discussed below are geared towards being
generally applicable.

If one is going to improve fold recognition, there are
several possible areas that could be worked on, although
some will be more fruitful than others. Can one build
better force fields or better scoring functions or add
more information? Are there better methods for dealing
with alignments (including gaps and insertions) when
fitting sequences to structures? Can one build better fold
libraries? These are some of the points that I will address
in this review.

New methods for force-field construction
The most common method for building a sequence–structure
fitness function is by using statistics from collections
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of native structures [6,13,14]. First, one presumes that
protein structures from a data bank constitute a kind
of ensemble, and that the distances between interaction
sites within proteins distribute themselves according to a
Boltzmann distribution. Second, one can calculate the po-
tential of mean force responsible for the observed statistics
via the Boltzmann equation. Implementing this usually
means discretizing distances and producing table-driven
force fields or contact terms, rather than the continuous
interaction functions familiar to molecular mechanics.
Although the framework sounds like a simple prescription,
there is still room for variation. For example, a force
field based only on Cα coordinates has fold-recognition
capability, but adding information from Cβ atoms or
sidechain centroids is better [15], and different research
groups use different interaction sites. One could certainly
add more atom-based interaction sites, possibly to better
account for hydrogen bonding, but at some point one
may introduce noise or redundant information or possibly
double counting. The framework of the Boltzmann
relation is not limited to distances. One may well add in
angular dependence [16,17]. There is also no consensus as
to how the interactions should be divided up. Typically,
statistics are collected separately for different topological
distances. A force field may have different contributions
from residues separated by one intervening residue (i,i+2),
two intervening residues (i,i+3) and so on. These classes
can be grouped and, beyond a certain topological distance,
treated as long range. There is little reason to believe
that any two groups in the world have used the same
categorization.

If one does not feel that pairwise distances are adequate,
one may introduce other terms. The early, successful,
threading force fields used an additional term to account
for solvation [6,18], whereas Matsuo and Nishikawa [16,17]
tried to account for solvation, hydrogen bonding and local
conformational preferences or tripeptide preferences. This
suggests an implicit weighting of terms; for example,
hydrogen bonding must indirectly influence the general
atom–atom pair functions. Adding an additional term
based on the appropriate N–O distances means that
hydrogen bonding is counted once on N–O distances and
once via effects on other atoms. More recently, Miyazawa
and Jernigan [19] noted that statistically derived potentials
of mean force suffer from packing and higher order effects
(more than from pairwise effects) and introduced an
additional repulsive term to account for these.

Force-field construction is really so arbitrary that if one
feels that Boltzmann-based statistics are inadequate, one
can simply add in any term that appears useful. For
example, one might rank a set of candidate structures for
a sequence using a statistical force field. Probable guesses
could then be filtered using a conventional electrostatic
term [20]. At least two implications of this approach exist:
first, it must be the case that the form of the first force
field does not quite capture the electrostatic contribution

of the second force field, otherwise the second calculation
would not be useful; second, using one function for
ranking, followed by a second for filtering is similar to
multiplying the two force-field terms. This is unusual
in a world in which we are used to the additivity of
molecular-mechanics-type interaction functions.

Most force fields have been tested by checking that some
sequences are most suited to their native structures hidden
within some threading library. Park and Levitt [21••]
applied a more difficult test. They used an off-lattice,
discrete model to generate vast numbers of misfolded
but native-like structures. Several force field terms were
then checked for their performance on fold recognition. It
may not be surprising that none of the contact term, the
Lennard–Jones-like term or the surface-area-based term
was alone sufficient. What is more interesting is that the
authors tried to generate a force field that would work in a
broad problem domain. As Park and Levitt [21••] suggest,
their work may be of use in folding simulations, rather than
just in fold recognition.

In contrast to the enthusiasm for statistically based
pseudoenergy functions, several groups have attempted
to identify weaknesses in this kind of approach. Thomas
and Dill [22••] used simple interaction functions and a 2D
lattice to show how residue pairs may not be independent
within a protein. This could be seen as damning for a
methodology in which one assumes that the statistics of
a pair AB are independent of a pair CD. Thomas and
Dill [22••] went on to give a geometric explanation of
how this lack of independence will depend on protein
size. They further challenged the statistical force fields
by suggesting that a great number of observations can
be explained simply on the basis of hydrophobic/polar
considerations. This last point has also clearly been made
by Huang et al. [23], who performed well on a large
number of fold-recognition tests, using such a simple
hydrophobic/polar model.

If one wants to build a set of functions for fold recognition,
there is no reason to be a slave to Herrn Boltzmann’s
statistics. One may construct a fold-recognition force
field by searching for a formulation that favours a
group of native sequence–structure pairs over a group of
incorrect nonnative sequence–structure pairs [24]. This
is quite a different philosophy to the methods discussed
above. In the statistical methods, one looks at native
sequence–structure pairs, formulates a potential energy
and expects it to be able to recognize nonnative pairs as
having high energy. Some approaches now exist that build
native/nonnative recognition into the parametrization from
the start. One particularly cumbersome and unwieldy
approach has the entertaining feature of using quasi-
Newtonian dynamics in parameter space as a method
for optimizing the force field’s performance [25]. This
approach also uses an objective method for clustering
interaction types so as to reduce the number of adjustable
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parameters, trying to gracefully handle combinatorial
degrees of freedom on top of the more tangible degrees
of parameter freedom.

At least two groups have presented very elegant ap-
proaches to building force fields that maximize the extent
to which they favour native sequence–structure pairs
over misfolded structures. This could be seen as either
increasing the statistical confidence of predictions or the
foldability of the force field. Wolynes and coworkers [26••]
have first defined a force field quality function, based
on the energetic separation of native sequence–structure
pairs from misfolded pairs. They have used an iterative
approach so that at each step the parameters are optimized,
the alignments recalculated and the quality function
evaluated (see below). Hao and Scheraga [27••] have
used a different gradient-descent approach, but one also
aimed towards optimizing the force-field performance.
Their work is the first to show how parameters can be
optimized for fold recognition against structures generated
by threading. The force field has been further improved
by optimizing its discrimination of the native conformation
from low energy structures generated by a sampling
method such as Monte Carlo.

Once one abandons Boltzmann formalism and treats the
force field as something to be rationally optimized, there
are other properties one might build in. Crippen [28••]
has used simple lattice models to first show how one can
extract a useful potential energy function from knowledge
of native structures alone and avoid the problems seen by
Thomas and Dill [22••]. Crippen [28••] has subsequently
noted that even if a pseudoenergy function performs
well at correctly recognizing folds, only a poor correlation
between energy and proximity to the native structure
may exist; however, such a correlation is desirable for two
reasons. First, if one is building a force field for threading,
it is not only necessary to perform well on the native
sequence structure, it is also necessary to perform well
for closely related structures: one’s library of candidate
templates will probably not contain a perfectly correct
structure. Second, if one wants to use some general search
method, the task is easier if the force field provides some
guidance, and low energies are more likely to correspond
to structures that are at least close to the desired answer.
Crippen [28••] explicitly built this property into the force
field by casting it in the form of a series of inequalities and
solving these for parameters using a linear programming
method.

Finkelstein and Reva [29] have used molecular field
theory to score protein sequence–structure alignments.
Their work has bearings not only on force-field con-
struction but also an alignment methodology (see below),
as the molecular field and sequence–structure alignment
are iterated to self-consistency. Although it may not
be obvious from the title, the method does rely on
physically based force-field terms. Finkelstein and Reva

[30] present an application based on β-sandwich proteins
but presumably have other calculations in store.

A final consideration of force fields is that if one can not
produce a better sequence–structure fitness function, can
one use a better sequence? Defay and Cohen [31] incor-
porated information from multiple sequence alignments
into a threading scheme. This is an idea which has been
mooted informally but not tested (or at least published)
formally. Intuitively, information from multiple sequence
alignments would be expected to be useful. Frequently,
there is no known structure for a protein sequence but
there are many highly homologous sequences known that
would be expected to fold into the same structure. Clearly,
a score based on more than one sequence will average over
contributions from residues that can be changed without
changing the overall fold.

Alignment methodology
Whichever way one views progress on scoring functions,
almost any fold-recognition method has to address the
problem of sequence-to-structure alignment. This is one
area in which there may be some consensus: current
methods do not perform well; and score functions are
frequently applied to nonoptimal alignments of a target
sequence to a candidate structure [32]. Ultimately, this will
never be an easy problem as, for any pairwise interaction
function, finding the optimal alignment is NP-complete if
one allows gaps or insertions of any length at any position
[33]. In other words, one can not bound the running time
by a polynomial function of the input size. This does not
really mean that one is likely to spend time exponentially
proportional to the size of the sequence or structure of
interest; it means that some approximations will be made,
or perhaps one’s probability of finding the correct answer
will decrease logarithmically with increasing sequence
length.

Not all force fields suffer from the combinatorial explosion.
If a residue can be scored in a position on a structure
without reference to the identity of its neighbours, a
standard dynamic programming algorithm can be used to
find the optimal alignment in O(n3) time. This is the case
for some hydrophobic/polar force fields (although it has not
always been exploited) and for other force fields that only
depend on the type of a residue and the coordinates of the
template that it is fit to [34].

If one is using a force field that requires knowledge of
both interaction partners, then some approximations or
restrictions will usually be used to make the calculations
feasible. For example, one could allow gaps and insertions
in some parts of the structure but could set gap
penalties to be infinitely high within recognized secondary
structure [35].

Another approximation is the frozen approximation in
which one scores each residue from the sequence in the
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field due to the residues present on the protein template.
Westhead et al. [36] have compared this approach with
the two-level dynamic programming method of Jones et
al. [6]. Neither method is greatly superior, but Westhead
et al. [36] have produced some useful methodological
results. They find that, using the frozen approximation,
two stages are useful. First, a family of folds can
be recognized using high gap penalties. Second, the
alignments can be optimized for the individual structures
using lower gap penalties. Westhead et al. [36] have
also described computational shortcuts to speed up the
alignment calculations; for example, they use constant gap
penalties in some cases and infinite gap penalties within
certain secondary structures. Some energy calculations
are avoided entirely by screening on the basis of one
component (solvation) of the pseudoenergy term.

The fact that a search space may grow exponentially does
not mean that a problem is always intractable. It may
be possible to construct a method that is not guaranteed
to find the optimal solution but, instead, finds a very
good solution with high probability. Lathrop and Smith
[37••] described a branch and bound search for finding
the optimal sequence–structure alignment. A side effect
of having such a good algorithm is that it highlights
weaknesses in the scoring functions and Lathrop and
Smith outline aspects that they feel need improvement.

A discussion of alignment algorithms assumes that one
has an idea of the appropriate gap penalties. In fact, gap
penalties are largely determined by trial and error and are
nontransferable between force fields. The framework of
Boltzmann statistics does not obviously give gap penalties
and most methods for optimizing force-field parameters
do not treat this problem. In contrast, Koretke et al.
[26••] have devized a method whereby the penalties are
optimized with the rest of the force-field parameters.
At each step of the iterative parametrization, alignments
are also recalculated using the current set of parameters
and these newly aligned structures are used at the next
iteration.

Fold libraries
A fold library may refer to the training set of proteins
used to parametrize a force field or it may refer to a set
of structures used as candidates for some sequence.

At some point, it is very probably that someone will use
totally artificial constructs for a fold library rather than
rely on the product of nature and structure-determination
methods. This possiblity was hinted at by Crippen and
Maiorov [38], who have used a geometric measure and
estimate all the possible folds for a specific size and
difference criterion [38]. Their work has also demonstrated
a method for generating smoothed protein structures
by applying a discrete cosine transform and setting the
smaller coefficients to zero before back-transforming.
Given the low resolution nature of most fold-recognition

force fields, it may not be unreasonable to remove the
bumps and details of real proteins.

Hamprecht et al. [39] have also highlighted the arbi-
trary nature of current fold libraries. They proposed
generating folds by reorganizing the topology of existing
structures where real proteins would permit this according
to geometric criteria. This may not be necessary for
threading small sequences onto larger structures, as current
alignment methods allow a sequence to align with gaps to
a template. There is also no clear route to handling the
combinatorial explosion due to all the ways a protein can
be reassembled. They do, however, make the very strong
argument that folding libraries are short of structures
suitable for threading large sequences.

Conclusions
Protein-fold recognition has quickly moved from being
purely speculative to a point at which applications can be
published [40]; many programmes are currently available
and the methods for generating statistical force fields
appear to be quite routine. This progress is in despite of
the fact that the methods are not reliable and certainly
not truly automatic (they still need some amount of
interpretation). Furthermore, one is tempted to ignore the
current weakness in sequence–structure alignments.

From the point of view of statistical force fields, incre-
mental improvements will certainly take place, but it may
be the case that more effort is needed on interpretation
[41], rather than more statistics. One approach is to
combine information from the length of a sequence, a
candidate structure, the pseudoenergy scores and the
number of aligned residues from a sequence–structure
alignment [42].

The problem of score interpretation is even worse. Most
force fields have a sequence or structure bias that seems
resistant to any sequence composition correction [43] or
to the use of statistical measures such as z-scores [18,44].
More fundamentally, a measure such as the z-score can
lose its meaning if one allows deletion of sequence during
alignment as the effective protein sequence changes [2].

One apparent direction in the field is the movement away
from threading methods. This may mean the construction
of force fields that work on a wider variety of misfolded
structures [21••,27••] or of force fields for simulation
[19], or it may even mean taking force fields that have
their roots in fold recognition and using these to extract
free energies [45••,46••]. Another trend seems to be the
dissatisfaction with the testing of force fields, especially
with ungapped alignments [31].

Although many would disagree, it may be that highly
potent force fields will be built by forgetting Boltz-
mann’s equation and optimizing the parameters for
some functional forms, so as to optimize a measure of
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force-field quality [25,26••–28••]. Depending on one’s
quality measure, this could mean building better force
fields in the conventional sense or, perhaps, admitting that
in many cases what one wants is a discrimination function
(for good or bad sequence–structure matches).

These developments, together with new approaches to
alignment problems, suggest that there will be improve-
ment in results from protein-fold recognition, and not
merely the stasis that one might see from studying the
mass of similar force fields.
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24. Crippen GM, Snow ME: A 1.8 Å resolution potential function for
protein folding. Biopolymers 1990, 29:1479–1489.

25. Ulrich P, Scott W, Van Gunsteren WF, Torda AE: Protein
structure prediction force fields: parametrisation with quasi-
Newtonian dynamics. Proteins 1997, in press.

••
26. Koretke KK, Luthey-Schulten Z, Wolynes PG: Self-consistently

optimized statistical mechanical energy functions for sequence
structure alignment. Protein Sci 1996, 5:1043–1059.

First, the authors parametrize a force field by optimizing its ability to distin-
guish native from nonnative folds for a sequence. Second, the authors give
a method to optimize gap penalties along with the rest of the force field.

••
27. Hao M-H, Scheraga HA: How optimization of potential

functions affects protein folding. Proc Natl Acad Sci USA 1996,
93:4984–4989.

As in [26••], the authors present a force field generation method that opti-
mizes fold-recognition capability. They show that even though a force field
performs well at finding a native structure amongst alternatives generated by
threading, it does not perform well with misfolded structures generated by
other means. The authors then improve their own force field to handle these
other decoy structures.

••
28. Crippen GM: Easily searched protein folding potentials. J Mol

Biol 1996, 260:467–475.
This paper gives a method for extracting the correct potentials of mean
force from observations of native structures. The authors then show how to
improve the suitability of the force field for searching algorithms by impos-
ing some correlation between pseudoenergy and distance from the correct
answer.

29. Finkelstein AV, Reva BA: Search for the most stable folds of
protein chains. I. Application of a self-consistent molecular
field theory to a problem of protein three-dimensional
structure prediction. Protein Eng 1996, 9:387–397.

30. Reva BA, Finkelstein AV: Search for the most stable folds of
protein chains: II. Computation of stable architectures of
β-proteins using a self-consistent molecular field theory.
Protein Eng 1996, 9:399–411.

31. Defay TR, Cohen FE: Multiple sequence information for
threading algorithms. J Mol Biol 1996, 262:314–323.

32. Lemer CM-R, Rooman MJ, Wodak SJ: Protein structure
prediction by threading methods: evaluation of current
techniques. Proteins 1995, 23:337–355.

33. Lathrop RH: The protein threading problem with sequence
amino acid interaction preferences is NP-complete. Protein Eng
1994, 7:1059–1068.

34. Ouzonis C, Sander C, Scharf M, Schneider R: Prediction of
protein structure by evaluation of sequence–structure fitness. J
Mol Biol 1993, 232:805–825.

35. Madej T, Gilbrat J-F, Bryant SH: Threading a database of protein
cores. Proteins 1995, 23:356–369.

36. Westhead DR, Collura VP, Eldridge MD, Firth MA, Li J,
Murray CW: Protein fold recognition by threading: comparison
of algorithms and analysis of results. Protein Eng 1995,
8:1197–1204.



Perspectives in protein-fold recognition Torda 205

••
37. Lathrop RH, Smith TF: Global optimum protein threading with

gapped alignment and empirical pair score functions. J Mol
Biol 1996, 255:641–665.

The authors give the first practical method for handling sequence–structure
alignments using residue-specific scoring functions and without using ap-
proximations.

38. Crippen GM, Maiorov VN: How many protein folding motifs are
there? J Mol Biol 1995, 252:144–151.

39. Hamprecht FA, Scott W, Van Gunsteren WF: Generation of
pseudo-native protein structures for threading. Proteins 1997,
in press.

40. Madej T, Boguski MS, Bryant SH: Threading analysis suggests
that the obese gene product may be a helical cytokine. FEBS
Lett 1995, 373:13–18.

41. Miller RT, Jones DT, Thornton JM: Protein fold recognition
by sequence threading: tools and assessment techniques.
FASEB J 1996, 10:171–178.

42. Jones DT: Two applications of statistical potentials: protein fold
recognition and de novo protein design. Abstract for Molecular

Interactions, 15th International Meeting of Molecular Graphics
Society, 1996 April 16–19, York.

43. Bryant SH, Lawrence CE: An empirical energy function for
threading protein sequence through the folding motif. Proteins
1993, 16:92–112.

44. Jones DT, Miller RT, Thornton JM: Successful protein fold
recognition by optimal sequence threading validated by
rigorous blind testing. Proteins 1995, 23:387–397.

••
45. Sippl MJ: Helmholtz free energy of peptide hydrogen bonds in

proteins. J Mol Biol 1996, 260:644–648.
See annotation [46••].

••
46. Sippl MJ, Ortner M, Jaritz J, Lackner P, Flöckner H: Helmholtz free
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