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The refinement of NMR structures by molecular

dynamics simulation
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We discuss the use of molecular dynamics simulations as a tool for the refinement of structures based on NMR data. The
procedure always involves the construction of a pseudo-energy term to model the experimental data and we consider the
various approaches to this problem. We detail recent work where we account for the time averaging implicit in NMR
measurements and attempt to model the experimental data more realistically. Finally, we discuss the problems and
approximations involved in this work, the lack of consensus as to refinement methods and the scope for future developments.

1. Introduction

In its purest form, a molecular dynamics (MD)
simulation involves some representation of a
physical system. Force fields should be as accurate
as possible, velocities should be carefully in-
tegrated and, hopefully, physical processes or
properties will be reproduced. More recently, how-
ever, it has become popular to use MD and re-
lated methods as a tool for the refinement of
molecular structures with respect to experimental
data, especially from nuclear magnetic resonance
(NMR) [1-4] or X-ray crystallographic measure-
ments [5,6]. In this article, we shall concentrate on
the specific case of data from nuclear magnetic
resonance (NMR) measurements and discuss some
of the problems with current procedures, recent
improvements and future directions.

NMR measurements provide two main kinds of
structural information. Firstly, J-coupling con-
stants between protons separated by three bonds
reflect the size of the included dihedral angle. The
bulk of NMR information, however, consists of
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nuclear Overhauser enhancement (NOE) measure-
ments, corresponding to interproton distances,
usually between sites less than about 5 A apart [7].
Unfortunately, the distances are not precise and
the set of data is usually not complete. This means
that there is no analytical method which can gen-
erate structures consistent with the experimental
data. Furthermore, the lack of data means that
there is not even a single solution to the structural
problem. Instead, there are one or more regions of
conformational space containing structures con-
sistent with the data. At the moment, the best way
to estimate the location and size of this space is
simply to generate families of plausible structures.

Most generally, MD simulations can be used
for refinement whenever one can construct a
potential-energy term whose value rises as the
system deviates more from some experimentally
measured parameter. When the system is simu-
lated, it will tend to run downhill with respect to
both real and artificial energetic terms. As long as
the system’s kinetic energy is regulated in some
way, it should reach a state better in agreement
with the experimental data and, ideally, also with
respect to the physical terms in the force field.
Compared to other optimisation methods, MD
has the advantage that it is capable of temporarily
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moving up potential-energy barriers and finding
better regions of space with respect to the en-
ergetic terms.

The use of MD as a refinement tool introduces
some considerations not normally present in a
MD simulation. Firstly, neither force fields nor
experimental data are perfect, so minima with
respect to the two terms may not coincide exactly.
One must then decide on the relative weight to
give to the artificial terms. In the case of refine-
ment using X-ray crystallographic data [5,6], it
may be justified to have the artificial terms
stronger than those of the normal force field. In
the case of NMR refinement, where data is usu-
ally not as accurate, one may prefer for the physi-
cal terms in the force field to dominate. At the
same time, the starting state of the system may be
far away from the desired final state. Under these
circumstances, it may be desirable to change the
force field and use a simulation protocol so as to
make energetic barriers more readily surmounta-
ble [8,9]. Continuing in this vein, it may be useful
to consider dynamics schemes which are no longer
Newtonian and merely serve as some means to
drive the system into the desired state. We will
also describe a recent innovation where we account
for the fact that measured NMR properties reflect
an average through time and not instantaneous
values. This has led us to the introduction of a
potential energy term which does not even con-
serve energy.

2. Modelling of the NOE with potential energy
terms

Because the NOE is due to dipolar interactions
between nuclei, the measured intensity is propor-
tional to r~® where r is the distance between a
specified pair of protons. In practice, unknown
distances are usually estimated by comparison of
NOE intensity or buildup rates with those from
protons at covalently fixed distances. This as-
sumes that the reference and estimated interpro-
ton distances are subject to the same motions [10]
and that only pairwise interactions contribute to
the measured intensities or buildup rates [11]. A
further complication arises, since molecules un-

dergo thermal motions and interproton distances
will fluctuate on a time scale shorter than that for
cross-relaxation processes. Then, one must re-
member that what is actually measured is a func-
tion of (r~®) where the angle brackets denote an
average over time. In the next section, we will
address the problem of trying to model this non-
linear time average in a MD force field.

Bearing in mind the nature of the NOE, the
penalty function or potential-energy term to en-
force the experimental data should be chosen.
This term should be simple and computationally
cheap while still driving the system to agree with
the experimental data. The simplest choice for this
term is quadratic with respect to the size of the
violation of the distance constraint [1,12], so

0, if r<r
2
%ch(r-ro)’
if rP<r<r®+Ar, (1)
ch(r——ro—%Ar) Ar,

if rP+Ar<r,

Vac(r) =

where V, (r) is the potential due to the distance-
restraint term for a given pair of atoms, r is the
instantaneous distance between the cross-relaxing
nuclei and r° is the distance constraint calculated
from the measured NOE. The force constant, K.,
controls the relative strength of this artificial term
in the force field.

Equation (1) actually describes three regimes.
Firstly, the potential energy is zero in the ideal
state where the instantaneous distance r is less
than the constraint distance r°. Next, the term is
quadratic for small violations of the restraint.
Finally, if the distance r is larger than the sum of
r® and Ar, the potential energy increases only
linearly. This serves to put an upper limit on the
size of the artificial force.

Fry et al. [13] used a similar term to eq. (1), but
also performed some final refinements using a
fourth-power term so

Vie(r) = K(r—r%)", (2)

where K included a small series of constants and
weights. Most recently, a form similar to eq. (2)
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was used, but with a sixth-power term {14,15].
Certainly this approach can be used to produce
steeper potential wells in the artificial energy term,
but this again raises the issue of the degree to
which one wants to balance the real and artificial
terms in the force field.

Scarsdale et al. [16] proposed a penalty func-
tion which more accurately reflects the physical
nature of the NOE, so

V() =[P - =00 @)

The purpose of this form can be seen by noting
that for each distance constraint, (#°)™% is a con-
stant, so it does not contribute to the derivative.
Equation (3) is thus appealing since it is quadratic
with respect to a function that more closely re-
flects the measured NOE instead of the distance, a
derived quantity.

3. Modelling the NOE as a time average

The pseudo-energy term described by eq. (3) is
a better approximation to the NOE than, for
example, eq. (1), but there is a more fundamental
problem in this approach to enforcing experimen-
tal constraints. As described in section 2, the
measured NOE is a weighted average of all con-
formations visited by a molecule on the NMR
time scale. In the worst case, the molecule might
be jumping between discrete states, none of which
individually contain the distances used for the r°
terms in eq. (1)-(3). Attempting to force struc-
tures to agree with the average NOE data may
push the system into regions of conformational
space which may hardly be populated in solution.
In the case of small peptides where structural
analysis is somewhat simpler, such discrete con-
formations have been identified and experimental
data could only be explained by combinations of
states [17,18]. For the refinement of a small oligo-
saccharide, Scarsdale et al. [16] actually performed
simulations using a model based on two identifia-
ble conformations. In the case of larger molecules
like proteins, it is more difficult to identify indi-
vidual conformations, since different parts of the
molecule may be jumping between their own states.

Superimposed on these motions, there will be the
normal thermal motions common to the whole
molecule. In this situation, one cannot identify
contributing conformers by inspection. The con-
formational space is best regarded as a continuum.

Recently [19], we proposed an alternative to the
use of (1)-(3). Instead of forcing the individual
distances r to agree with the experimental data,
we used a potential energy based on the time-aver-
aged distance 7(t), so now

0, if 7(¢)<r®,

Vae(F(1)) = { 1Ko (F = %), (4)
if 7(z)>r°.

This means that we only require a structure to
satisfy the constraints as an average over time.
Furthermore, it is possible to use the correct aver-
aging of r to account for the power dependence of
the NOE. So one could define

(1) =(rmo) e, (5)

where, again, the angle brackets denote an average
over time. The time scale of a simulation is usually
much shorter than the correlation time for overall
molecular tumbling, so one can neglect the in-
fluence of angular fluctuations [17]. Tropp [20]
showed that under these circumstances, the NOE
is effectively a function of r~ 2, so we define

Fe)=(rm 7 (6)

This can then be written in a form suitable for
summation over the course of a MD trajectory,

F(t) = (%L’lr(t’)_3 dt’)#m. (7

Equation (7) is an average over the course of a
whole trajectory, and it is this which must agree
with the experimental data. It is thus the correct
way to analyse a MD trajectory. It would, how-
ever, not be suitable as the basis for a pseudo-en-
ergy term in a simulation. If one were to use eq.
(7), the averaging would be over an ever-growing
time period and would become progressively less
sensitive to changes in the system. In order to
keep the system responsive to changes in the in-
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stantaneous r, it is preferable to use some kind of
running average. This is best done by using a
memory function with a built-in exponential de-
cay, so we define

-1/3

F(r)= (%fote""/*[r(z—t’)]“3 de’ , (8)

where 7 is the decay constant for the exponential
decay. This form of averaging results in an 7(¢)
which does not feel the influence of short fluctua-
tions in the system, but is still responsive to trends
in behaviour. The degree of responsiveness is con-
trolled by the parameter 7. In the limiting case of
7 = (), there is no averaging. As 7 becomes longer,
the pseudo-energy term becomes less sensitive to
fluctuations.

Originally, 7(¢) was defined by eq. (8), sub-
stituted directly into eq. (4) and the appropriate
force constructed by taking the derivative with
respect to r. This method worked well for a very
simple model system [19] and for some small
peptides, up to 12 residues (unpublished results).
In the case of larger proteins and larger experi-
mental data sets, however, large forces were occa-
sionally generated. This came about since the force
derived from eqs. (4) and (8) contained a fourth-
power term with respect to r(¢)/r(t).

This problem was avoided by adopting an un-
usual approach to enforcing experimental data in
an MD simulation. No pseudo-energy term was
defined at all. Instead, only a force was defined
[21], so

0, if F(1)<r°

F (1) = { —Kae[7(1) =] 8 ©)

if 7(r)>r°,

where F,(1) is the force on atom i due to-atom j
and r,;=r,—r. Equations (4-9) introduce some
unusual properties into a MD simulation. The
force is no longer simply a function of coordi-
nates, but also, because of the use of 7(¢), a
function of all previous configurations. This in
turn means that the force field is no longer con-

servative. The consequences of this are discussed
in section 5.

Furthermore, the use of eq. (9) means that it is
no longer meaningful to refer to the pseudo-en-
ergy associated with a particular structure since,
strictly, no such measure exists. Instead, it only
makes sense to look at the properties of a system
over some period of time. We then use eq. (9) to
enforce experimental constraints, but we judge the
success of a structural refinement by calculating
the trajectory average given by eq. (7).

4. Application of time-averaged NOE constraints

The first tests of time-averaged distance con-
straints were performed on a very artificial system
consisting of only three Lennard—Jones particles
[19]. Two of these were fixed in space while the
third was free to move without even periodic
boundary conditions to restrain the accessible
space. Two distance constraints were then im-
posed so as to require the mobile particle to be
close to both of the fixed particles simultaneously.
No single conformation existed which could satisfy
both constraints instantaneously, so the con-
straints could only be satisfied, on average, if the
mobile particle moved between the two fixed par-
ticles. This was analogous to a molecule having to
jump between distinct conformations which indi-
vidually could not explain experimental data.

This small system served to demonstrate the
feasibility of the method and provided some indi-
cation of the effect of the adjustable parameters.
Firstly, it was necessary to establish reasonable
values for 7, the decay constant for the memory
function in eq. (8). When 1 = 0, the system had no
memory and no averaging of the calculated dis-
tances. As expected, the imposed constraints were
not satisfied either instantaneously or as an aver-
age over the trajectory. As t was increased and
the averaging was over longer periods, the mobil-
ity of the system increased and the free particle
was able to spend time close to both of the fixed
particles in turn. Although at any instant at least
one of the distance constraints was violated, both
could be satisfied as an average over the trajecto-
ries. Most importantly, it was clear that the size of
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was not critical, as long as it was longer than the
time required for the system to visit all the confor-
mations necessary to explain the experimental
data. Furthermore, it could be seen that in order
to achieve reasonable averaging, the length of a
trajectory should be approximately an order of
magnitude larger than 7.

The model system also served to highlight the
increased reliance on the physical terms in the
force field. If 7 was too long, the distance con-
straints did not restrain the mobile particle. Be-
cause there were no covalent terms in the force
field, the system could move far away from either
of the two desired conformations and, on average,
violate the distance restraints. If anything, this
was encouraging for application to real molecules.
It showed that as 7 was increased, the influence of
the artificial constraints decreased. It suggested
that if one had a good conformation with respect
to both physical and pseudo-energy terms, then
the refinement procedure would become closer to
a realistic molecular simulation.

Time-averaged distance constraints were subse-
quently applied to the refinement of a large mole-
cule, the protein tendamistat [21]. This was an
important test for several reasons. Firstly, the
original structure from the Ziirich group had
served as a demonstration of the ability of NMR
data to determine a solution structure [22]. With
additional experimental information, tendamistat
became one of the most precisely determined solu-
tion structures up to that time [23,24]. The struc-
tures, however, were the result of extensive dis-
tance-geometry calculations using the variable
target function method [25], so they were static
solutions to the structural problem. Because there
was no evidence of conformational heterogeneity,
it was of particular interest to see the additional
conformational space that would be allowed using
time averaging on the distance constraints.

Two of the published distance-geometry struc-
tures were selected for MD refinement on the
basis of their agreement with the distance con-
straints. For each structure parallel simulations
were run with normal MD refinement (7= 0) and
with 7 increased to a final value of 1.5 ps. All
results were judged in terms of averages over 20 ps
simulation trajectories.

I

i i I 1 1 I I

010 20 30 40 50 &0 70
Residue number

Fig. 1. Root mean square positional fluctuations of a-carbons

in tendamistat over 20 ps trajectories. Solid lines are from runs

using time averaged NOE’s, dashed lines from runs using

conventional MD refinement. I and III refer to the structure
names used in ref. [23]. Taken from ref. [21].

MD refinement of the structures, with or
without time-averaged distance constraints, re-
sulted in a large improvement in potential energies
of the structures. There were, however, significant
differences in both residual violations of the ex-
perimental constraints and in the mobility of the
structures during the simulations. Trajectories
using time-averaged constraints had average viola-
tions typically 70-80% of those generated by nor-
mal refinement. The most remarkable difference,
however, was in the mobility of the molecules.
Considering backbone a-carbons, root-mean-
square positional fluctuations were consistently
larger and, at some sites, double those using con-
ventional refinement (fig. 1).

Aside from a general increase in mobility, it
was clear that certain parts of the molecule be-
haved quite differently under the influence of
time-averaged distance constraints. The most
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striking example was the extra motion of the
sidechain of Tyr 15. Figure 2 shows the neighbour-
ing peptide segment from two simulation
snapshots superimposed on the starting distance-
geometry structure. The experimental data con-
tained 26 NOE restraints for this residue and the
distance geometry calculations suggested that it
had a rather rigid and well-defined location. The
MD simulations, however, suggested an alterna-
tive explanation for the experimental data. The
large number of NOE constraints may actually
have resulted from the rapid motions of the
sidechain bringing it near a series of other sites in
turn. These rapid motions would result in only
average NMR resonances and averaged NOE’s
would be detected in the experiments. This ex-
planation is also consistent with the fact that no
electron density was observed for the sidechain in
the X-ray crystallographic structure determination
[26].

The use of time-averaged distance constraints
has advantages beyond simply better reproducing
the experimental data. Firstly, because a structure
is not required to satisfy all the restraints simulta-
neously, it is not necessary to use large force
constants for the pseudo-energy terms. This should
result in less distorted structures. The greater mo-

T13
A
B
Y15
c
S17

bility of the structures means that they spread
through a greater region of conformational space.
This is desirable when a refinement is viewed as a
search of conformational space. Finally, trajecto-
ries produced by this method include a wide range
of possible conformations rather than simply a
cluster of structures centred about some artificial
average. This extra realism should become im-
portant as NMR based structures become more
frequently used for purposes such as drug design.

5. Future improvements in structural refinement

Although the introduction of time-averaged
distance constraints appears to be an improve-
ment over the use of static constraints, there are
still some unresolved problems. The force on a
particle can change over time, even if coordinates
do not change. This results in heating of the
structure. Unfortunately, this heating is a result of
the distance constraints, so it need not be evenly
distributed over the molecule. This means that
individual atom-temperature coupling may be
more appropriate then the currently used overall
coupling to a temperature bath [27]. This will lead
to more realistic distribution of the system over its

T13
A
B
Y15
c
S17

Fig. 2. Mobility of Tyr 15 in a 20 ps simulation of tendamistat. A stereo view of the peptide segment from residues 13 to 17 is shown
from (A) 9 ps into a simulation trajectory, (B) distance-geometry starting structure (C), 16.2 ps into trajectory. Both MD structures
were least-squares fitted to (B) on the basis of all backbone heavy atoms. Taken from ref. [21].
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energy surface, but to a less Newtonian dynamics
scheme.

The method is also limited by the finite time of
a simulation. Ideally, one should simulate long
enough to average over the conformational space
covered by a molecule on the NMR time scale.
This would typically be closer to milliseconds
rather than the picoseconds currently usually
simulated.

More generally, other fundamental changes
should be considered for the modelling of NOE
data. As a matter of principle, one should not
construct the pseudo-energy term as a function of
distances which are a derived quantity. Instead,
one should write

V. =K(NOE,, — NOE )’ (10)

where NOE ,, and NOE_,,. are the observed and
calculated NOF’s, respectively. Unfortunately, eq.
(10) does not specify what approximations should
be used for calculating the NOE. Certainly, the
method should consider averaging through time,
but it should also account for multiple spin cross-
relaxation pathways [28,29]. This could be done
by an iterative method [30,31], but Yip and Case
did actually incorporate an expression including
multi-spin effects into a MD pseudo-energy term
[32]. As described, the procedure would need to be
simplified in order to be computationally practi-
cal, but it is not clear what compromises would be
necessary.

Aside from better modelling of the NOE, there
are even more fundamental questions associated
with the generation of structures from NMR data.
There is no consensus as to the relative impor-
tance one should attach to the physical force field
and the experimental data. At one extreme, one
may use distance—geometry structures without any
MD refinement or with refinement in a force field
based on very simplified non-bonded interactions
[9]. Alternatively, approaches such as time-depen-
dent distance constraints attempt to minimise the
influence of pseudo-energy terms.

Furthermore, there is still no agreed method for
quantifying the degree to which a structure is
defined. Clearly the root-mean-square positional
differences within a family of structures is not a

sufficient criterion. Several authors have noted
that different procedures introduce different bi-
ases and will produce families of structures centred
about different averages with different spreads
[33-35]. Moreover, if one enforces distance con-
straints as time-averaged quantities, additional re-
straints may actually increase the space covered
by a structure, rather than making it appear better
defined [21].

Finally, the issue of how best to treat J-cou-
pling constants must also be addressed. These
measurements do provide information on dihedral
angles, but are also subject to averaging and con-
siderations such as relative weighting in the force
field.

In conclusion, the use of NMR for determining
solution structures has become a popular field, but
it is still possible for different groups to generate
different solutions given the same experimental
data. The questions discussed in. this article thus
seem relevant when considering the reliability, re-
porting and use of NMR structures.
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