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ABSTRACT 

Two traditional clustering algorithms are applied to configurations from a long 
molecular dynamics trajectory and compared using two sets of test data. First, a 
subset of atoms was chosen to present conformations which naturally fall into a 
number of clusters. Second, a subset of atoms was selected to span a relatively 
continuous region of conformational space rather than form discrete 
conformational classes. Of the two algorithms used, the single linkage method is 
inappropriate for this kind of data. The divisive hierarchical method, based on 
minimizing the difference between cluster centroids and extrema, is successful 
but also prone to imposing clustering hierarchy where none can be justified. 
0 1994 by John Wiley & Sons, Inc. 

Introduction 

typical molecular dynamics (MD) simulation A may generate thousands of configurations of 
a system separated by regular steps in time. If, 
however, one is interested in structural (rather 
than dynamic) properties, this implicit time axis 
will serve more as a nuisance than as a useful 
property. In this case, one wants to identify states 
which are frequently and repeatedly populated, 
regardless of when they occur in a simulation. By 
definition, this amounts to a requirement for tradi- 
tional statistical cluster analysis. 

* Author to whom all correspondence should be addressed. 

Regardless of the clustering algorithm used, any 
cluster analysis procedure will require a similarity 
matrix in which each element represents the struc- 
tural difference between a pair of structures. It is 
also often convenient to regard this matrix as the 
distance matrix for a high-dimensional polygon in 
which each point represents a single structure. In 
1983, Levitt ' calculated such matrices and their 
projections into two-dimensional Cartesian coordi- 
nates. These projections could then be used to 
sketch out the path of a trajectory and suggest the 
presence of clusters in conformational space. The 
problem with this approach is that the high- 
dimensional polygon corresponding to the original 
distance matrix may be poorly represented in 
two-dimensional space and, for example, points 
close in the low-dimensional space may actually 
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be separated by larger distances before the projec- 
tion. 

True automatic cluster analysis has been ap- 
plied to conformations, although not necessarily 
from MD trajectories. Unger et a1.2 looked at more 
than 80,000 hexamer fragments taken from litera- 
ture protein str%ctures. After an initial assessment 
of the data, a 1 A cutoff of root mean square (rms) 
difference in coordinates was used for both the 
formation of initial clusters and the centers of new 
clusters during an iterative process. This proce- 
dure effectively reduced the mass of data to about 
100 important structural units. Rooman et al.3 clus- 
tered short peptide fragments into a hierarchical 
scheme based on the sum of the squared distances 
of individual elements to the cluster's center of 
mass. This was extremely successful in identifying 
broad conformational classes and recurring motifs. 
Karpen et al.4 used an iterative approach to cluster 
15,000 configurations from a trajectory of a pen- 
tapeptide based on differences in dihedral angles. 
This method strongly relied on the selection of an 
arbitrary cluster cutoff distance based on argu- 
ments about what constituted a distinct conforma- 
tion as compared to thermal fluctuations. 

Finally, a novel approach to cluster analysis of 
trajectories was applied by Gordon and Somorjai? 
Fuzzy cluster analysis was used to group parathy- 
roid hormone fragment conformations into a pre- 
determined number of clusters. This method has 
the advantage that it retains the idea of reducing a 
mass of structures down to a manageable number 
of representative cluster centres while conceding 
that cluster membership is not absolute. A transi- 
tion state, for example, may well be best treated by 
giving it fuzzy membership of more than one 
cluster. Unlike the clustering methods which re- 
quired the choice of a distance cutoff for cluster 
membership, this implementation required a pre- 
determined number of clusters. 

In contrast to previous work, our aim was to 
apply more than one clustering algorithm in an 
attempt to determine what type of procedure best 
suits the particular nature of MD configurations. 
We also wished to assess the utility of cluster 
analysis for systems larger than the small peptides 
typically used by previous workers. Furthermore, 
it was of interest to use more than one data set, 
because some data will form clusters naturally, 
whereas some will have relatively little structure. 
Finally, we were interested in algorithms which 
did not require advance selection of cutoffs for 
cluster size or the number of clusters. 

Methods 

SIMI1,ARITY MEASURES 

Regardless of the cluster analysis algorithm, one 
needs a measure of how each element differs from 
every other. Root mean square differences of 
Cartesian coordinates have been used,*r5 but there 
are two possible disadvantages. First, until very 
recently, there was no evidence that this measure 
obeyed the triangle inequality. Second, we wished 
to avoid relying on optimal superposition of coor- 
dinates, although this is only a minor technical 
point. This problem could be avoided, as well as 
the necessity for coordinate superposition, by clus- 
tering based on rms differences of dihedral  angle^.^ 
Unfortunately, structural similarity is not necessar- 
ily well correlated with the difference in internal 
angles. A small change in a single angle may lead 
to a large structural change due to leverage effects, 
whereas two large changes in dihedral angles may 
lead to a minimal structural change. For example, 
a peptide plane flip involves two large dihedral 
angle changes, but possibly little overall structural 
change. 

For our analysis, we follow Rooman et al.3 and 
Levitt,' who constructed similarity matrices based 
on the rms deviation of intramolecular distances, 
also referred to as the distance matrix error.6 We 
define the difference D, between two conforma- 
tions, a and b, as 

where the summation runs over all pairs ij of the 
N atoms being considered in the configurations a 
and b. di, is the three-dimensional distance be- 
tween atoms i and j .  This measure has the advan- 
tage that D,, is well correlated with the difference 
between structures a and b. It has the clear disad- 
vantage that it is not sensitive to chirality, so in the 
extreme case, Dab = 0 for mirror image structures. 
Fortunately, we do not expect chiral inversions or 
changes in overall fold during a MD trajectory. 
The measure does obey the triangle inequality, so 
if one know the high-dimensional distance d u b  

between conformers a and b and the distance d,, 
between conformers b and c, this does put bounds 
on the distance d,, between conformers a and c. 
This is more than a mathematical curiosity if we 
wish to apply a clustering algorithm which relies 
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on knowing the shortest path between two con- 
formers. 

GENERATION OF CONFIGURATIONS 

Configurations were taken 0.5 ps from a 1 ns 
trajectory in vucuo of the @-residue structured 
domain of barley serine protease inhibitor. This 
yielded 2000 structures to be clustered. Because 
this trajectory was solely to serve as a source of 
structures, the MD simulation is described only 
briefly. The calculations were carried out using the 
GROMOS simulation package: with a timestep of 
2 fs and weakly coupled to a temperature bath: at 
300 K with a relaxation time of T~ = 0.1 ps. The 
SHAKE algorithm was used to constrain bond 
lengths.' Starting coordinates were taken from a 
published, nuclear magnetic resonance (NMR) de- 
rived structure of barley serine protease inhibitor." 
Time-averaged distance restraints" and J-cou- 
pling restraints" were both imposed using a relax- 
ation time of 20 ps. Experimental distance re- 
straints were taken from Po~lsen '~  and J-coupling 
restraints from published data.14 An initial 30 ps of 
simulation were used to equilibrate the system 
before the 1 ns used for analysis. 

HIERARCHICAL DIVISIVE ALGORITHM 

The first clustering algorithm applied to the 
data was of the divisive hierarchical type.15 First 
we define some properties of a cluster using the 
analogy of a graph. From the similarity matrix, the 
distance from each configuration to every other 
configuration is known. The largest such distance 
for a configuration is called the eccentricity of that 
configuration. The configuration of smallest eccen- 
tricity is known as the cluster centroid. This point 
is marked by a cross in Figure 1. We can also 
consider the largest single distance within a cluster 
and call this the diameter of the cluster. This is 
marked by the arrowed line in Figure 1. The pair 

FIGURE 1. Definitions of terms applied to clusters. The 
crossed point is the cluster centroid, the circled points 
are the extrerna, and the arrow shows the cluster 
diameter. 

of points separated by this distance are called the 
extrema and are circled in the figure. 

The actual divisive algorithm is best explained 
by Figure 2. Initially, all points are part of one 
large cluster (A). After calculating the eccentricity 
of each point, the two extrema (circled points) are 
taken as the initial centroids for two new clusters. 
Each point in the parent cluster is then appor- 
tioned to one of the new clusters depending on 
which centroid it is closest to. This division, shown 
at stage B, results in some points falling on the 
wrong side of the natural clustering line. The cen- 
troid of each of the new clusters is then calculated 
(stage C) and the points are reapportioned (stage 
D). The centers of the new clusters are recalculated 
and the points reapportioned until the centroid 
points are stable or a maximum number of itera- 
tions is reached. We set the maximum number of 
iterations to 10, but in practice, convergence was 
usually achieved in two or three cycles of centroid 
calculation and reapportioning. 

Although we did not observe any convergence 
problems, conceptually, one can construct a set of 
points with a number of outliers. If the outlying 
points are sufficiently removed, they will form 
their own clusters. More likely, they would have 
the effect of distorting the final clusters. Because 
they affect the selection of cluster centroid, they 

FIGURE 2. The divisive hierarchical clustering 
algorithm applied to a set of two-dimensional points. 
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could also add to the number of iterations needed 
for convergence. The use of a graph definition of 
cluster centroid has an important side effect. If one 
were to use a center of mass approach to calculat- 
ing cluster centroid, the exact distance to an outlier 
determines the degree to which the cluster cen- 
troid is skewed. With the graph definition, it only 
matters that a point is of high eccentricity, not 
exactly how high. 

SINGLE LINKAGE ALGORITHM 

The second clustering algorithm applied to the 
data was based on the single linkage method.I5 In 
this procedure, the entire data set is considered as 
a weighted undirected graph with the configura- 
tions as vertices and the elements of the similarity 
matrix as weighted edges. Kruskal's a1gorithml6 is 
then used to find a minimal spanning tree. At each 
stage, each connected subgraph is a potentially 
interesting cluster. 

This can be understood by considering the sim- 
ple example shown in Figure 3. This shows a set of 
points scattered in only one dimension and with 
the distance between every pair of points (config- 
urations) known. The distances are first sorted and 
then considered, in turn, starting from the shortest 
distance. The top line of Figure 3 shows such a set 
of points with no initial clusters. In the first step 

a m  m a  

e m  m a  
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1. 

4' 

m o  
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FIGURE 3. The single linkage clustering algorithm 
applied to a set of one-dimensional points. 

(a), the first distance is considered, two points are 
joined, and the first cluster of only two configura- 
tions is formed. In step (b), the next distance is 
considered, adding a third point to the first cluster. 
In step (c), the next shortest distance joins two 
previously unclustered points, forming a new clus- 
ter. In step (d), a third cluster is formed and all the 
points are members of some cluster. This still, 
however, does not constitute a minimal spanning 
tree, so the algorithm is not finished. In steps (el 
and (0, there is a merging of clusters until all the 
points form a single grouping. 

The algorithm has several attractive aspects. 
First, it is intuitively appealing to form clusters by 
joining the most closely related structures, regard- 
less of when they occur in a trajectory. Second, the 
progress of the algorithm is readily monitored. At 
each step, one can count and plot the number of 
clusters formed and the number of structures clus- 
tered as a function of distance. If there is a sudden 
change in the number of clusters as the distance 
increases, it suggests a natural structure in the 
data. Finally, if one is willing to discard outlying 
points, there is no need to continue until all points 
are clustered. 

Results 

To compare clustering algorithms, it is worth 
trying more than one kind of data set. Ideally, 
there should be one set in which configurations 
fall into clear and natural clusters. Any algorithm 
should work with this data. At the same time, it is 
useful to have a data set with less structure. One 
would like to know if an algorithm has a tendency 
to produce midleading clusters where they are not 
physically justified. By choosing subsets of atoms 
from the barley serine protease inhibitor simula- 
tion, we attempted to generate two such data sets. 
To this end, we first selected set (a): all backbone 
heavy atoms (carbonyl carbon, amide nitrogen, 
and C a )  from residues 46-51 and 60-64. These 
atoms form two strands of a four-stranded beta 
sheet,17 and an examination of the NMR distance 
information13 suggested the presence of distinct 
conformational states. For the data set with less 
structure, set (b), we simply took the backbone 
heavy atoms from all 64 residues of the protein. 
Although individual regions may hop between 
conformational substates, the combination of all 
such transitions in different parts of the molecule 
will tend to distribute the conformations more 
evenly through conformational space. 
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The justification for the atom selections can be 
seen by considering the distribution of similarities 
between configurations. There are N, = 2000 tra- 
jectory snapshots and thus 1,999,000 (Nc(Nc - 
1)/2) unique nonzero entries in the similarity ma- 
trix for either atom subset. The histograms in Fig- 
ure 4 show the distribution of the similarities. In 
the upper panel (a), the distribution is plotted for 
atom set (a), the small section from the beta strands. 
The most c$mmon difference between structures is 
about 0.8 A; but, more importantly, there is a 
distinct asymmetry to the plot. This is in contrast 
to the lower panel, which shows the same distribu- 
tion when all backbone atoms are considered. The 
post common difference between structures is 1.5 
A, but the distribution is symmetric about the 
median. This reflects the relatively unstructured 
uniform distribution of configurations in the high- 
dimensional space. 

APPLICATION OF THE DIVISIVE 
HIERARCHICAL CLUSTERING ALGORITHM 

When run to its conclusion, the result of the 
hierarchical clustering algorithm is to spread the 
trajectory across a binary tree. At the root of the 

tree is the initial cluster consisting of all configura- 
tions. Going down, in a hierarchical fashion, are 
child nodes where each is a subcluster. At the 
leaves of the tree are individual configurations. 
This way of viewing structures is different from 
the usual picture of a trajectory as a function of 
time. For N, configurations, the tree will have N,, 
leaves, but because it is not a balanced binary tree, 
only a lower limit can be specified for the number 
of levels in the tree (logz(Nc)). For the 2000 struc- 
tures considered in each of the data sets here, this 
means at least 11 levels. In practice, transition 
states and small energetic mimima lead to the 
formation of many small clusters and a distinctly 
unbalanced and weedy binary tree. 

If one simply wanted to divide a trajectory’s 
conformational space, the binary tree could be 
taken as a final result, but this would not be very 
informative. More usefully, one can begin to look 
for relatively populated conformational states. 
These should be collections of structures confined 
to small conformational volumes. With the binary 
tree representation, such clusters are easily located 
by a recursive traversal of the tree, starting from 
the root and selecting each node farthest from the 
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FIGURE 4. Histograms of interconfiguration similarities calculated from eq. (1 1 applied to 2000 barley serine protease 
MD configurations. (a) The distribution of distances between configurations based on the subset of backbone atoms 
from the two strands of beta sheet. (b) The distribution of similarities based on all backbone atoms. 
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root with a minimum number of members and 
with a diameter less than some arbitrary size. 
Selecting the node farthest from the root means 
that a node is not selected if one of its children 
meets the selection criteria. 

This process was first applied to atom set (a), 
the two backbone fragments from the beta sheet of 
barley serine protease. Figure 4a shows that the 
mosto common interconfiguration distance is about 
0.8 A, so true clusters should be of a smaller 
diameter than that. To search for important narrow 
energetic wells, one can then pick a small paxi- 
mum cluster diameter of, for example, 0.55 A and 
only those clusters with 10 or more members. This 
leads to 13 clusters, as summarized in Table I. 
Although this group of clusters accounts for only 
138 of the original 2000 structures, the selection 
criteria ensure that they are representative of pop- 
ulated energetic minima. The table also shows 
another important property of the clusters. This is 
the time, within the original trajectory, spanned by 
each cluster. The whole trajectory spans 1000 ps, 
and the timespan of a cluster is calculated by 
subtracting the time of the first from the last clus- 
ter member. This is of interest because structures 
close to each other in sequence will tend to be 
structurally similar. If the members of a cluster 
cover a significant amount of time, it suggests that 
they are true recurring conformations. 

In the case of atom set (a), the success of the 
algorithm can be roughly gauged from simple 
plots of the structures. Plotting the centroid and 

TABLE 1. 
Clusters of Diameter Less than 0.55 A with 
10 or More Members from Atom Set (a). 

Number Time spanned 

Cluster members Diameter (A) (ps) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

12 
11 
10 
10 
10 
11 
10 
11 
10 
10 
11 
11 
11 

0.51 
0.52 
0.53 
0.48 
0.50 
0.53 
0.54 
0.51 
0.54 
0.52 
0.54 
0.53 
0.51 

726 
581 
843 
933 
498 
469 
761 
61 1 
61 2 
782 
720 
741 
682 

the two extrema of a cluster gives a good indica- 
tion of its spread while presenting a fairly clear 
picture. For example, Figure 5 shows the first four 
clusters from Table I. Picking any of the other 
clusters gives a similar picture. The structures in 
each panel were all fitted to the centroid of the 
first cluster of Table I and are all shown in the 
same orientation within their box. The four clus- 
ters shown all have the expected internal similarity 
but differ from each other in aspects like the orien- 
tation of one end of one of the beta strands or the 
backbone angles in another region. 

The divisive algorithm was then applied to atom 
set (b) (all heavy backbone !toms). The entire set 
of conformations spans 3.47 A, and Figure 4 shows 
that the most, common interconfiguration distance 
is near 1.5 A. Again, to search for low-energy 
(highly populated) recurring conformations, one 
Fight search for clusters of diameter less than 1.2 
A with more than 10 members. This leads to 10 
clusters described in Table 11. There are two main 

A 

FIGURE 5. Example clusters formed from atom set (a) 
using the divisive algorithm. Each panel shows the 
centroid and two extrema from one cluster. Each 
individual structure consists of two strands of backbone 
heavy atoms. All structures in all panels were fitted to the 
centroid of the upper right cluster, based on the shown 
subset of atoms. 
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TABLE II. 
Clusters of Diameter Less Than 1.2 8 with 
10 or More Members from Atom Set (b). 

Number Time spanned 
Cluster members Diameter (A) (PS) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

12 
10 
10 
11 
11 
11 
10 
10 
11 
10 

1.19 
1.18 
1.14 
1.15 
1.08 
1.12 
1.10 
1.15 
1 . I 5  
1 .I5 

789 
244 

5 
842 
357 
7 

221 
642 
6 
5 

differences when compared to the data in Table I. 
First, to locate a reasonable number of clusters 
with at least 10 members, on: has to use a clustgr 
diameter cutoff of about 1.2 A rather than 0.55 A, 
as for the previous atom set. Whether one regards 
this spread of structures as structurally similar is a 
matter of arbitrary judgment. Second, the last col- 
umn of Table I1 shows that four of the clusters 
consist almost entirely of sequential structures. 

500 r - 1  
400 

300 

200 

100 

0 

100 I 

These clusters are simply reflecting time proximity 
of structures rather than real recurring conforma- 
tions. Although it is not shown in the table, clus- 
ters 4 and 6 have more than nine members which 
are also sequential in the original trajectory. 

APPLICATION OF THE SINGLE LINKAGE 
CLUSTERING ALGORITHM 

In contrast to the divisive approach, which con- 
siders the distance from each configuration to a 
cluster centroid, the single linkage algorithm is 
based on the shortest distance between any pair of 
structures. As described earlier, the progress of the 
algorithm can be monitored at each step by plot- 
ting the number of clusters that have been formed 
and the number of structures that have joined an 
existing cluster. These plots are shown in Figure 6 
for both atom sets. The left-hand panels show the 
number of clusters as the range of interconfigura- 
tion distances increases, and the right-hand panels 
show the number of structures which have been 
clustered. Initially, when few configurations have 
joined a cluster, additional distances will often 
lead to the formation of a new, but smaller cluster. 
For atom set (a), tbe number of clusters continues 
to rise until 0.27 A, when 191 clusters have been 

1500 

9 
1000 g 

3 cn 

500 

0 

0 
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8 

distance (A) distance (A) 

FIGURE 6. Application of the single linkage algorithm. The upper panels are for data set (a), the lower panels for data 
set (b). Left panels show the number of clusters formed as the distance between structures increases. Right panels 
show the number of configurations clustered up to that point in the algorithm. 
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formed, and then starts to fall as the number of 
cluster merge operations exceeds the number of 
cluster formation operations. For atom set (b), the 
corresponding point occurs at 0.58 A after 409 
clusters have been formed. 

To attempt to extract useful information from 
the single linkage algorithm, one must look at a 
plot like Figure 6, pick a cutoff distance, and 
consider the clusters formed at that point. For 
example, with atom set (a), a cutoff distance of 
0.30 A results in 160 clusters. The right-hand panel 
of Figure 6 shows that 924 of 2000 structures have 
joined clusters at this point. Applying this cutoff 
leads to one cluster with 450 members, one of 21 
members, and 158 clusters of 6 or less members. 
All of the tiny clusters consist of structures which 
are sequential in the original trajectory, and most 
have only two members. Clearly this is not a 
satisfactory result. In case the problem is that clus- 
ter merging has removed most of the information, 
one could look at 0.25 A, where there are also 160 
clusters. This leads to one cluster of 31 members, 
one of 28, and 158 clusters of 6 or less members. 
Later in the algorithm’s progress, when mor: 
structures have been included, a cutoff of 0.34 A 
results in 1646 structures in 100 clusters. This leads 
to one cluster of 1274 members, one of 107 mem- 
bers, and 98 clusters of 4 or less members. Apply- 
ing the single linkage algorithm to atom set (b) 
results in exactly the same kind of disappointing 
behavior. Typically one or two large clusters are 
formed with a plethora of tiny clusters usually 
consisting of two sequential configurations. 

RUNNING TIME OF ALGORITHMS 

Aside from judging the results of each algo- 
rithm, one can also assess their running time. The 
hierarchical divisive method is bounded by O( N,’), 
where N, is the number of structures to be clus- 
tered. The running time for the single linkage 
method is the running time for Kruskal’s mini- 
mum spanning tree algorithm.I6 This is O(e log el, 
where e is the number of edges in the graph. In 
our case, the number of edges is (N:(N,’ - 1)/2, 
so the algorithm is bounded by O(N,’ log N:). 
Although algorithms exist which will find a mini- 
mum spanning tree with 0“:) running time, 
these do not necessarily give minimum spanning 
trees of subgraphs at each step. In other words, 
they do not provide clusters at each stage of the 
calculation. 

In practice, these running times are not critical. 
The time-consuming step is the calculation of the 
initial similarity matrix. Before two configurations 
can be compared using eq. (11, one needs a matrix 
of internal distances for each configuration. This 
operation is O(N:), where N: is the number of 
atoms considered in each conformation. The com- 
parison of these matrices to generate the final 
similarity matrix requires quadratic time with re- 
spect to the number of structures. Although the 
final result is bounded by O(N:N:), this does not 
account for a potential memory problem. 

A single distance matrix has (N:(N: - 1))/2 
entries. If one has, for example, 100 atoms, this 
results in 4950 entries. With 2000 structures and 
using 4-byte floating-point arithmetic, storing all 
the distance matrices would require just under 40 
Mb of memory. This means that for realistic sized 
calculations, the calculation is often going to be 
bound by input/output operations. The only relief 
is provided by the fact that the similarity matrix 
need only be calculated once for a specified set of 
atoms in a particular trajectory. 

In contrast, the second step of clustering, apply- 
ing an algorithm such as the hierarchical divisive 
method or single linkage method, can be con- 
ducted entirely in memory and is independent of 
the original number of atoms. Using the data here 
as an example, we began with 2000 structures and 
a similarity matrix of 1,999,000 entries. Using the 
same machine assumptions as before, this requires 
8 Mb of memory. Of course, these figures are 
somewhat arbitrary and performance depends on 
available machines and the size of trajectories. 

Discussion 

The clearest result from these calculations is 
that the hierarchical divisive algorithm seems to 
produce useful, structurally significant results, but 
the single linkage algorithm produces nothing of 
value. Although this is surprising considering the 
ideal picture presented in Figure 3, the problem is 
that the points in a well-sampled trajectory do not 
have such a clear structure. This can be seen by 
considering the exaggerated situation shown in 
Figure 7. There are clearly two clusters present 
which should be automatically identified. Unfortu- 
nately, a line of closely spaced, less interesting 
points joins the two clusters. In the case of an MD 
trajectory, this might represent two conformational 
states joined by a transition pathway. The single 
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FIGURE 7. Distribution of points not suited to the single 
linkage algorithm. 

linkage algorithm fails because it is based on the 
shortest distance between points. In this case, the 
diagram is constructed so that the most closely 
spaced points are in the transition region, and 
attempting to cluster this data would lead to a 
single cluster forming near the center and expand- 
ing to encompass the two interesting clusters. 

Although the hierarchical divisive method pro- 
duced apparently satisfactory results, it may be 
potentially misleading. One can imagine a set of 
points distributed uniformly on a regular grid with 
no natural clustering. The divisive method will 
take such data and simply carve it into even pieces, 
producing meaningless clusters. To some extent, 
this is what happens when the method is applied 
to atom set (b). If a trajectory's configurations are 
evenly distributed across conformational space, 
then the divisive algorithm will tend to produce 
no more then time slices, as seen in the last col- 
umn of Table 11. 

This behavior could be seen as a weakness of 
the divisive algorithm, but it really reflects the 
nature of the data. Atom set (a) was chosen be- 
cause we expected the small set of atoms to adopt 
a relatively small set of conformations. When con- 
sidering the whole backbone, however [ atom set 
(b)], the difference between any pair of structures 
will rarely reflect a single conformational property. 
Instead, it will reflect changes in many simultane- 
ous and partly independent regions of the system. 

It is of some interest to compare our results 
with the approaches of previous workers. Karpen 
et al? took 15,000 structures spanning 2.2 ns and 
divided them into six clusters. In this work, no 
attempt was made to force all structures into a 
small number of clusters. Instead, we discussed 
only what we defined to be interesting clusters, 
even when they accounted for only a small frac- 
tion of the structures. The reason for this is shown 
in Figure 8, which shows a set of configurations 
scattered over a simplified one-dimensional en- 
ergy surface. There are two populated energetic 
minima which should be identified as clusters as 
well as a number of structures occupying high-en- 

FIGURE 8. Distribution of structures over a simple 
energy surface. 

ergy states. If the trajectory is sampled frequently 
enough, these conformers should spread them- 
selves according to a Boltzmann distribution over 
the energy surface. This will include a number of 
structures in unlikely high-energy states. To obtain 
the most structurally important conformers, these 
outlying points should probably be ignored. Our 
means of selecting clusters tended to pick out 
configurations sitting in the bottom of energetic 
wells, whereas the approach of Karpen et a14 
would tend to include even the high-energy struc- 
tures. The fuzzy clustering approach of Gordon 
and Somojai5 would give these structures fuzzy 
membership of more than one cluster. The obvious 
way to sidestep this question would be to energy 
minimize all structures before cluster analysis and 
thus push each configuration toward the nearest 
energetic minimum. 

As computers become faster, more data are pro- 
duced and the need for data reduction becomes 
clearer. Already, trajectory simulations routinely 
generate lo3 or lo4 snapshots, and even NMR 
structure calculations may produce collections of 
10' configurations. Cluster analysis is obviously 
one way to condense the structural information, 
albeit at the expense of dynamic properties. The 
only caveat is that not all algorithms are useful 
and, when applied to the wrong data, the results 
can be misleading. 

Note Added in Proof. Since submitting this arti- 
cle, similar work," in press, has been brought to 
our attention addressing almost identical issues. It 
is the intention of all parties to extend the work 
with a comparison of clustering algorithms and 
common data sets. 
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