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ABSTRACT

Wurst is a protein threading program with an empha-
sis on high quality sequence to structure alignments
(http://www.zbh.uni-hamburg.de/wurst). Submitted
sequences are aligned to each of about 3000 tem-
plates with a conventional dynamic programming
algorithm, but using a score function with sophisti-
cated structure and sequence terms. The structure
terms are a log-odds probability of sequence to struc-
ture fragment compatibility, obtained fromaBayesian
classification procedure. A simplex optimization was
used to optimize the sequence-based terms for the
goal of alignment and model quality and to balance
the sequence and structural contributions against
each other. Both sequence and structural terms oper-
ate with sequence profiles.

INTRODUCTION

Protein threading is justified by the observation that when a
protein structure is solved, it is often similar to one that was
previously known, even in the absence of detectable sequence
homology. This is the main reason for optimism in the area of
protein threading or, more generally, protein fold recognition.
Given a sequence of interest, one should find the most appro-
priate template, calculate the sequence to template alignment
and make the best possible initial model (1,2). Historically,
threading was distinguished from pure sequence-based
methods because it relied on a structural or force field-like
score and might be able to find more remote similarities than
sequence-based methods. More than ten years ago, there was
some mixing of methods (3), but now the borders between
techniques are even more blurred. Sequence comparison
methods are now more sensitive (4–10) and many threading
codes include terms from sequence similarity (11,12) or other
prediction methods (13).

The Wurst program and server use protein threading, but
with an optimized weighting of sequence and structural terms.
Even the pure structure components take advantage of se-
quence profiles. Unlike most other packages, the contributions
of the different components have come from a numerical
optimization procedure geared to producing the best possible
sequence to structure alignments as measured by the resulting
models. This principle has been applied throughout, even to
the selection of gap penalties and construction of substitution
matrices.

OVERVIEW, INPUT/OUTPUT AND METHODS

The server accepts a sequence and builds a conservative
sequence profile using psi-blast (4). This profile is aligned
to just over 3000 single chain template structures from the
protein data bank (PDB) (14) using the Smith and Waterman
alignment algorithm (15) and a scoring scheme comprising
of a combination of structure- and sequence-based terms. This
gives every template an ‘alignment score’ for the sequence. At
the same time, three-dimensional models are calculated from
all alignments and evaluated using a more expensive quasi-
energy function (16) and gap penalty cost based on distances
within the model rather than simply the number of residues in a
gap or insertion (17,18). The final score associated with each
model is the combination of the alignment score, rescored
model and gap penalties.

The models/alignments are sorted according to their final
scores and a list of high-scoring alignments and models (in
PDB format) is returned by email. The protein models contain
side-chains only as far as the Cb atom and will have missing
residues or gaps between residues when these occur in the
alignment.

The server does let one choose the amount of output in the
results, but it does not encourage freedom of choice in the
calculation details. Gap penalties, substitution matrix and
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coefficients for the various terms are fixed in a dictatorial
manner since these terms have been optimized to fit each other.

Sequence to structure score function

The structure-based score function used by wurst allows align-
ments to be calculated with a Smith and Waterman algorithm
(15), without the need for a double dynamic programming
approach (3) or use of the frozen approximation (19–21). It
could be seen as a statistical measure of the compatibility of a
residue (and its immediate neighbours) with small fragments
of structure. Unlike other fragment-based approaches, there is
no assumption that fragments can be characterized by simple
amino acid frequencies (22). Instead, wurst fragment library
construction assumes that fragments can be described by a
collection of intertwined or correlated sequence and structural
tendencies. In practice, this is quite different fromother fragment
classifications. For example, two classes may be structurally
similar but differ completely in their sequence properties. To
build the structure score functions, every possible overlapping
fragment of length nine was extracted from several hundred
parameterization proteins. From each fragment, discrete de-
scriptors (amino acid types) were collected alongside contin-
uousdescriptors for structuralproperties (j,y angles, end toend
Ca distance and a simple measure of solvent accessibility). A
Bayesian classification procedure (23) was then used to find a
near optimal mixture model describing the sequence–structure
fragmentdata. InnormalBayesianstyle,onestartsbynoting that
the probability P(Fi 2 cj jFi) that fragment is in class cj is

P Fi 2 cj jFi

� �
=

P Fi jFi 2 cj
� �

P Fi 2 cj
� �

P Fið Þ

P(Fi) and P(Fi 2 cj) are prior probabilities of the attribute
vector (sequence and structure descriptors) of Fi and the
class cj, so they describe the degree of prior belief. For realistic
data sets, the probabilities P(Fi 2 cj jFi) are impossible to
compute, so approximations are used. Gaussian distributions
were assumed for continuous descriptors and the sequence and
structural descriptors of each fragment were taken as independ-
ently distributed. Then one can express P(Fi 2 cj jFi) in terms
of products of distributions of observations within each class.
The prior probability P(Fi 2 cj) of a fragment being part of a
class requires the class description itself and is obviously not
initially available. Therefore, it was obtained by starting from
initial estimates and optimization of the attribute probability
distribution by expectation maximization (24). The last step is
then to determine the total number of classes. We again apply
Bayes’ rule,

P m jFð Þ = P mð ÞP F jmð Þ
P Fð Þ

where P(m jF) is the posterior probability of classm given data
F. In concrete terms, the form of P(m) favours a small number
of classes, thus minimizing the problems of over-fitting or
fitting to noise. The classification used for the wurst score
function reduced a set of more than 105 fragments to just
over 400 classes.

Once constructed, the attribute distribution model is a direct
estimate of sequence to structure compatibility. It can be
directly cast as a score function for sequence to structure

alignment which does not use the template sequence in any
way. Finally, the implementation in the wurst server uses a
sequence profile, generated by psi-blast (4). At each position,
the score is calculated based on the fractional occupation of
each residue type at each sequence position.

Optimization of sequence-based terms

As well as the structural terms, the wurst server uses a
sequence similarity term, and this requires some amino acid
substitution/compatibility matrix. Normally this reflects evolu-
tion and the rate at which amino acids mutate into each other
(25), but for protein structure modelling, this is not exactly the
property of interest. One simply wants the matrix that pro-
duces the alignments and consequent models which are geo-
metrically closest to the correct answer (structure for the
sequence) (26). In a parameterization process, the 210 values
of the substitution matrix were treated as adjustable para-
meters as well as gap opening and widening costs. Alignment
quality was then numerically optimized with respect to all
these parameters. For this process, all that is required is a
numerical measure of alignment quality and a method to
optimize the parameters. This is not difficult to construct.
Given a pair of proteins, A and B, of known structure, the
sequence of A can be aligned to B and a model built. The best
alignment is the one that produces the best model for A.
Obviously, the sequence of B can be aligned to A and the
quality of the model for B calculated. The final cost function is
the average of model quality for a large set of proteins with at
least some structural similarity.

The alignment quality was quantified using a previously
introduced measure (27) which is close in spirit to the Q-
value often quoted in the protein folding literature (28). Unlike
the root mean square difference (RMSD) between Cartesian
coordinates of model and correct structure, this measure is
relatively insensitive to overall motions such as hinge bending
in structures and, furthermore, avoids the problem that when a
model is poor, it does not matter whether it is bad or very bad.
Once the model quality is below some threshold, its contribu-
tion to a cost function should be near zero. In this implementa-
tion, the quality measure is based on the fraction of Ca–Ca

contacts within a model that are within 4 Å of the correct
value. In the uninteresting case of modelling a sequence to
its own structure, this fraction is 1.0 for a perfect alignment.
For remote homologues, no alignment will give a measure
of 1.0, but in optimization terms, this does not matter. One
simply wants the best alignments possible.

To optimize the substitution matrix and parameters used by
the server, a set of 1544 pairs of proteins was selected with
sequence identity ranging from less than 15% to 70%, wherein
each member had structural similarity to the other with a root
mean square difference of less than 5.0 Å for at least 50% of
the sequence. Within each pair, the sequence of A was aligned
to B and vice versa, giving more than 3000 alignments to be
calculated. Next, each alignment calculation was repeated
with 20% added to and then subtracted from the gap opening
penalties. Although this could have the effect of building in
tolerance to various parameter values, it is really an aid to
removing susceptibility to noise. The final cost function came
from summing over the different gap penalties and both per-
mutations of alignments giving a set of 9264 = (6 · 1544)
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alignments to be calculated at each optimization step. For most
calculations described in the next section and for all calcula-
tions in the running server, a sequence profile was calculated
using extremely conservative settings. A sequence was com-
pared with the non-redundant database and sequences accepted
with an expectation (e-) value of less than 10�10 for a max-
imum of three iterations. This profile was then expanded by
no more than two iterations accepting homologues with an
e-value less than 10�8.

As described above, the procedure would generate an amino
acid substitution matrix optimized for alignment quality as
built by Qian and Goldstein (26). Although a similar calcula-
tion was done for testing, the wurst parameter set is quite
different. Wurst alignments are calculated by constructing a
score matrix Stot for the Smith and Waterman (15) alignment
where Stot = Sstruct + wseqSseq. The structural/fragment score
function described above is used to calculate Sstruct with the
use of sequence profiles. Sseq is calculated from sequence
similarity and wseq is a coefficient weighting the two terms.
The final set of parameters was then gap opening and widening
in sequence or profile, gap opening and widening in structure,
wseq and the 210 elements of a substitution matrix.

There are some consequences of this optimization proced-
ure. All the parameters have been tuned to produce the best
models possible, on average, over a range of difficulty.
Because all the parameters have been simultaneously optim-
ized, they form a self-consistent set. For example, the sub-
stitution matrix is not a general substitution matrix, but rather a
numerical creation, fitted to the influence of the structural
score function.

RESULTS

Ultimately, the results will be, and are currently being, judged
by comparison with other approaches. The wurst server parti-
cipates in two continuously running fold recognition assess-
ment servers (29,30), hopefully highlighting its flaws and
deficiencies or perhaps its success in recognizing remote
homologues and the quality of alignments to these homo-
logues. In the EVA assessment (30), it is also compared against
modelling servers, to allow comparison with servers whose
strength should be in producing relatively refined models.

Those longer-term assessments on new structures will be the
most objective measure of quality. In the meantime, there are
results that show why the server uses its current mixture of
terms. Figure 1 shows the alignment quality, asmeasured by the
cost function described in the previous section. It is ameasure of
model quality over the set of 1544 protein pairs. For each result,
at least gap penalties were optimized to give the best results.

The poorest results are obtained with either simple
sequence–sequence alignment using a blosum62 matrix (31)
or with the fragment-based structural score function alone, as
shown by the left-hand bars. The sequence–sequence align-
ment can be improved slightly by optimizing the substitution
matrix (results not shown). More importantly, replacing one
sequence by a sequence profile taken from psi-blast (4) has a
marked effect both on the sequence term (labelled ‘sequence +
profile’) and on the structural term (labelled ‘bayes + profile’).
In the case of sequence comparison, the improvement due to
sequence profiles is entirely expected (32–35). With hindsight,

it is not surprising that the structural term also benefits from
using partial amino acid types. Technically, it is interesting
that although the pure sequence and pure structure terms give
similar results, theyalsocontain some independent information.

The bar furthest to the right gives by far the best alignment
results and is the method and parameter set used by the wurst
server. It has the sequence–sequence term with an optimized
substitution matrix added to the Bayesian statistics, fragment-
based score term. All gap penalties and wseq have come from
the numerical optimization and both sequence and structure-
based terms used sequence profiles/partial amino acid types.

DISCUSSION

The performance of the server is being judged objectively and
very publicly (29,30), but given the description of the methods,
one can speculate as to its strengths and weaknesses. Wurst
has been built to produce the best possible alignments, but
further improvements in the methodology are possible. For
example, we are currently measuring the effect of replacing
the sequence to profile terms with a profile to profile version
with an appropriately optimized substitution matrix.

One may also note that a single substitution matrix is used,
regardless of sequence identity. This is different from the
series of Blosum matrices with different members built for
differing degrees of amino acid similarity (31). It would
certainly be possible to recalculate the wurst matrices using
subsets of the protein pairs, but this would be at the cost of
signal to noise ratio in the optimization calculation.

The description of the structure-based terms gives the
impression that they are completely fixed. From the point
of view of the wurst server, they are quite stable, but at the
same time we are testing different structural descriptors.
Fortunately, the kind of measurement given in Figure 1 is
easy to repeat, so testing new terms is straightforward and
the components of the wurst server will be replaced if there
is numerical evidence they have been improved.

The only area where the wurst server asks for attention is in
the final ranking of structures and in confidence measures.
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Figure 1. Alignment performance of sequence and structure terms. The cost is
in arbitrary units, with 0.0 being worse than random and �1.0 being ideal.
Sequence refers to a blosum62 matrix; bayes to the fragment-based, structure
based term based on Bayesian statistics; sequence + profile to the use of
sequence profiles with an optimized substitution matrix; bayes + profile to
the structure-based term, but using sequence profiles rather than single
amino acid types; bayes + sequence + profile refers to the combination of
the preceding two terms.
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Currently these are mostly based on the same measures used
for the alignment calculation, but more complicated
approaches have been used by other servers (36,37). Given
the philosophy underlying the wurst server, this area will be
the next target for an optimization and server update.
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