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ABSTRACT

In this article, a fundamental aspect of protein engineering called into question: Is it

really possible to computationally redesign the sequence of a protein so as to improve

its stability? Specifically, the case where almost all protein’s sequence is allowed to

change to any other residue type is considered. The aim is to highlight two conflicting

schools of thought. First, there are compelling fundamental reasons why protein design

should not be possible by optimizing a conventional energy-like function. Second,

there is evidence that it is possible and has been done in practice.

Key Words: Protein sequence design; Sequence optimization; Protein engineering;

Negative design.

INTRODUCTION

In the early 1980s,[1] it was suggested that one should be able to design proteins,

almost at will, with techniques from molecular biology at hand to synthesize them.

Two decades later, there are some clearly conflicting propositions, results, and interpret-

ations. There are good theoretical grounds to believe the problem is very difficult, but also

experimental evidence to believe it is almost solved. It is not clear who is correct, lucky,
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or wrong. It is certainly time to highlight opinions in the literature that are completely

conflicting or results that disagree with reputable theory.

Protein design means different things to different researchers. Sometimes, a molecular

biologist can change a few residues in a protein sequence, measure a change in activity or

stability, and call the process “protein design.” This is not the definition used here. Instead,

we consider a specific question. Given a protein of known structure, can one permit all the

residues to change and apply a computational method to automatically produce a better

protein sequence, not necessarily related to the original (native) sequence? The word

“better” will mean different things to different researchers. Here, we only consider thermo-

stability or the resistance to unfolding under native conditions. We do not consider making

an enzyme active at a different pH, tolerant of organic solvents, or able to bind to a specific

ligand. We do not consider modifying a protein so as to change kinetic properties such as

folding rate. The reason for this narrow perspective is that some kind of simple stability is

the property most often addressed by experiment or calculation and, most important for

this discussion, it is the property most related to an energy-like function. It is also the prop-

erty that leads to a disagreement between what has been experimentally determined and

what would be expected from simple reasoning.

There are two very separable aspects to the problem of finding a better protein

sequence. First, one needs some kind of score, cost, or merit function. This is the heart

of the problem and is discussed below. Second, one needs some way to search through

the rather large search space. The problem has been formally shown to be NP-complete,[2]

but intuitive arguments make the point. If one is dealing with proteins, there are 20 amino

acids and 20N possible sequences for a protein of length N. If one is dealing with some

other heteropolymer or a reduced protein alphabet, the problem still has exponential

growth. Even in the classic toy case of a hydrophobic/polar model with just two monomer

types, a molecule of 100 residues has 1030 possible sequences. Here, problem of searching

is not considered because it is the score (energy) aspect that leads to contradictions.

Furthermore, one could argue that the search problem has been solved. On a small protein,

Dahiyat and Mayo[3] used a pruning algorithm[4] to reduce the search space to one that

could be tackled exhaustively. Skorobogatiy et al.[5] took an analytical approach to the

problem and if one wants a distribution of protein sequences, one could use configura-

tional-biased Monte Carlo[6] or even Monte Carlo biased with a self-consistent mean

field approach.[7]

Searching for a protein or polymer sequence does have some practical and principled

differences to other problems in computational chemistry. In protein design, one is given a

good answer (the native sequence) before the start of the calculation. One does not know if

this native/natural sequence is in some sense optimal, but it is probably a reasonable solu-

tion. This is important because many of the search methods can be readily persuaded to

include a bias toward this answer, and some reports have included such a bias.[8,9] The pro-

blem of protein design also spans a continuum of generality or difficulty. At one extreme,

permitting every residue at every site to change to every other residue type is most general

and most challenging. A small restriction on the problem would be to fix some residues

before the calculation so as to maintain an enzyme’s active site. Next, one could argue

that only hydrophobic residues should be permitted in the core of a protein, so the problem

is computationally simpler. Last, in the least general case, one may pick a small number of

residues and vary only these computationally. The consequence of this range of problems

is that it is not possible to fairly compare different reports in the literature.

Torda2



ORDER                        REPRINTS

SCORE/ENERGY FUNCTIONS

If one is going to computationally optimize the sequence of a protein or polymer, the

critical decision will be the type of score or energy function to use. The earliest, truly

designed, peptides were based on sets of rules interpreted by hand,[10] but that approach

does not scale well to a 20N space, for even modest values of N. A more applicable

approach would be to work with the estimates of potential energy from a classical atomis-

tic force field. Unfortunately, this leads to a serious complication. Use of an atomistic force

field assumes one knows where the atoms are to atomic accuracy. Most amino acids, how-

ever, have rotatable degrees of freedom in their side chains. This implies that one must add

the problem of predicting side-chain geometry to the original problem of optimizing the

amino acids. In the context of protein design, Hellinga and Richards[11] described what

has become a standard approach to this problem. They assumed that the side chains

would only occupy one of several preferred rotamer positions and allowed Monte Carlo

moves to select the side-chain conformations. One could also use a self-consistent

mean field approach to find preferred, consistent rotamers[12] or treat each rotamer of a

residue as a separate type of amino acid.[3]

Given the size of the search space and the approximate nature of the problem, it is

very common to use a more coarse-grained approach with a protein model that averages

over all the side-chain atoms. This would often have the side chain represented by a single

interaction site located at the Cb atom or side-chain center of mass. This may not be a

tragic loss of detail. It may even be particularly sensible given that protein design methods

rarely admit that the protein backbone can move[13 – 15] and atomic detail may be largely

irrelevant. Ultimately, for the purposes of this argument, the interest lies only in the pro-

blems that remain, even if one has a perfect model for the energy of a system.

FUNDAMENTAL PROBLEMS

In 1993, Shakhnovich and Gutin optimized protein sequences using a simple score

function and search method, but they did not allow the system to move freely through

the possible sequences.[8] Instead, they completely constrained the system to its original

composition, merely reordering or shuffling its amino acids. In 1994, Jones used a genetic

algorithm and simple scoring scheme to optimize protein sequences, but with the restraint

that the sequence be penalized as it changes from the native.[9] This was rationalized by

noting that there is some correspondence between overall protein composition and struc-

tural class. Neither of these calculations would seem really general. If a score function

acted as intended, it should not be necessary to confine the search space. In practice,

this kind of restraint is potentially damaging. It has been said that protein sequence

space is much larger than structure space.[16] Put more usefully, there are often very

large numbers of apparently unrelated protein sequences that fold to similar structures.

Any sequence searching method that is restrained to its starting sequence will never

find unrelated sequences.

The real reason for having to restrict the search of sequences was given by Godzik.[17]

One can change a protein sequence, producing a new sequence/structure pair of lower

“energy.” There is, however, absolutely no reason to expect this sequence/structure

pair not to fold into some different structure. Considering this as a picture, Fig. 1 shows
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two steps. The process begins with the native sequence on the desired structure. Next,

a calculation or energy-based redesign yields a “better” sequence for the desired structure,

exactly as intended, and the exercise should be finished. Unfortunately, a real protein

would now be free to explore conformational space. It may well find some alternative

conformation or prefer the entropic attraction of the poorly structured mess shown at

the bottom of Fig. 1. This argument is extraordinarily general, plausible, and empirically

observed. As Godzik and many others noted, most simple score functions, in the context of

protein design, lead to long homopolymeric stretches punctuated by other favored residues

Figure 1. The fundamental problem in energy-based protein sequence design.
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around loops and turns. In a very artificial sense, these sequences are of lower energy than

the native sequence. They simply will not fold to the desired structure. Godzik’s point is

even more general. Considering Fig. 1, it probably does not matter if one is dealing with

potential energy or free energy approximations. There is no reason to believe that a

sequence designed for a structure using some free energy approximations will not be

able to find some even better conformation than the intended one. With such a fundamental

problem, it is possible that discussions about the relative importance of various terms

to protein design[18,19] are premature.

NEGATIVE DESIGN

There is a clear resolution to the problem, even if it seems intractable. One should not

merely optimize a sequence for a given structure. One must also choose the sequence so its

score on the native structure is better than every other alternative conformation it could

ever visit. This idea has taken the name “negative design” and implies some thresholds

one could debate. How much better should the desired conformation be, or what should

be the energy gap to the nearest competing structure or the average of competing struc-

tures? What actually constitutes a different structure? None of this matters to the central

problem. What was a difficult problem involving the choice of sequence on one confor-

mation is really a ferocious problem involving a sequence, the desired structure, and

every other conformation that contributes to the partition function.

The challenge of negative design has been tackled by methods of ever-increasing

cunning. While changing monomer types in the protein, one must somehow incorporate

the influence of all other conformations. A true brute force approach will not be practical,

so a number of ideas have been tested, usually on lattice and model systems. One may try

to do simultaneous Monte Carlo steps of both sequence and conformation,[20] or try to

identify and consider the set of most important, competing conformations.[21 – 23] One

could search for an approximation (low-order expansion) that encapsulates the contri-

butions of alternative conformations.[24 – 26] Working with real proteins instead of model

systems, some groups have explicitly incorporated ideas of negative design, but have

dealt with a limited number of computational mutations or a small number of alternative

configurations.[27,28]

Coming from a different philosophy, a very elegant approach is to try to build an

all-encompassing score function that includes the concept of negative design, but

encodes it as a function of sequence and the single desired structure. Chiu and Goldstein

took a lattice model protein with a defined, pairwise, “true” energy function.[29] The sys-

tem was small enough that, for a given sequence, all conformations could be visited.

They then used numerical optimization to search for a new set of parameters that not

only found a sequence of best energy, but also tried to ensure the desired sequence

was of better score than competing conformations. In hindsight, it is not surprising

that the best function for optimizing a sequence is not the “true” energy function. It is

some different function that reflects the influence of all possible configurations. The authors

make the point that, for protein sequence design, “the ability of increasingly accurate energy

functions . . . is limited.”
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Given the intuitive arguments, simulation results, and quantity of literature devoted to

the process of negative design, one may well conclude that the optimization of protein

sequences is a pastime doomed to failure on real protein systems.

PRACTICAL RESULTS

Protein sequence optimization is intuitively difficult, formally NP-hard, and the per-

fect score function does not seem to correspond to energy, potential energy, or any easily

defined property. As if to defy common sense and physics, Dahiyat and Mayo[3] took the

structure of a small protein and used a pruning algorithm[4] to completely redesign its

sequence using a quite conventional, classical, atomistic score function.[30] As a tour

de force demonstration, they synthesized the protein, used nuclear magnetic resonance

to show that it folded to the desired structure, and by normal sequence searching methods

showed that it was not obviously similar to the native sequence. There was apparently no

consideration of negative design, and the score function was a conventional, classical,

atomistic molecular mechanics force field with slightly reduced van der Waals radii and

an extra term to account for solvation. This is not the only work to have used an atomistic

force field, but it is remarkable for the synthesis and testing of the results and the

method’s apparently general nature. It raises an important question. Have other groups

been able to achieve similar success and have they been able to tackle this general

problem, allowing almost all residues in a sequence to change in an almost unrestricted

manner?

Earlier, in 1994, Hellinga and Richards[11] used a conventional molecular mechanics

score function, with an extra solvation contribution, for protein sequence optimization.

They only permitted a few core, hydrophobic residues to change and only to other hydro-

phobic residues. More recently, this kind of calculation has continued, well after one might

expect more awareness of the need to penalize undesired, nonnative structures. One group

has published more than one sequence optimization calculation simply using the popular

CHARMM[31] force field supplemented by an estimation of solvation energy.[32,33] They

only allowed a small subset of residues to change and only in a limited fashion. Neverthe-

less, they refer to their method as a general automatic method for sequence design.

Another group, using a classical atomistic force field, refers to their work as “a fully auto-

mated protein design strategy,” but they do not permit the composition of the protein to

change.[34] In their work, they refer to their score function as a free energy. This may

or may not be the case, but there is no way to see it as incorporating any explicit penalty

for a sequence preferring to fold to some unexpected structure. Continuing in this vein,

others based their work on the classic ECEPP force field,[35,36] supplemented by solvation

and “entropy” terms, but only allowed a small number of residues to change from the

native protein.[37 – 39] Only when some of the designed sequences are synthesized it will

be possible to see how successful the methods were.

RECONCILIATION

There are fundamental reasons to believe protein design should not be possible

with a simple energy-like function, without explicitly considering negative design.
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There is a body of work claiming it has been done. It is very difficult to reconcile these

views, but there are several possibilities. There could be some fundamental misunder-

standing and all the work involving negative design might be unnecessary.[17,20 – 29]

Maybe the literature claiming success should be treated more cautiously and some of

the fully automatic general design methods are not as general as they appear. Some

of these questions could be answered if the relevant design calculations were allowed

to run with an unrestricted choice of sites to change and an unrestricted choice of

substituents.

There are some alternative and plausible interpretations. If the energy-function

methods are successful and really general, then they must be the all-encompassing design

functions that Chiu and Goldstein[29] suggested looking for. They must subtly incorporate

features that not only pick the sequence of best score, but also the sequence that will not

prefer to be in some other structure. The only obvious changes to conventional functions

have been a slight adjustment to Lennard–Jones terms[30] or incorporation of a solvation

energy/free energy approximation.[3,11,32,33,37 – 39] It is completely unclear how these

terms could be the key to negative design. Solvation approximations would not do

anything to prevent the favoring of hydrophobic homopolymers in the core of proteins

and the reduction of van der Waals radii is normally justified as a compensation for the

inaccuracies introduced by keeping the protein backbone fixed.

There is another possibility that cannot be confirmed or discounted. Although there is

a school of thought that says that one should not chase the details of energy functions,

those working with atomic detail spend a vast amount of computational time searching

for good atomic packing. This is the raison d’être for methods such as the dead-end

elimination algorithm.[4] Proponents of these methods may well argue that the secret

for confining the system to the correct configuration is careful side-chain packing. One

should also note that the most spectacular successes approaching complete sequence

redesign have used score functions with much atomistic detail, rather than the coarse-

grain methods described above.[3,15]

Last, there are functions that may not be potential, free, or any other energies. If one

mixed a modified Lennard–Jones term with statistical rotamer preferences, a solvation

approximation,[40] a separate hydrogen-bond term,[41] a statistical approximation to

electrostatics,[42] and a statistical preference of amino acid types, one cannot say what

kind of score function one has.[43] Most intriguingly, such a function does seem to be

successful in protein sequence redesign.[44] The most recent application of this scoring

function is more remarkable, in that the authors first designed an artificial structure of

93 residues and then optimized a sequence for it.[15] This result has some important impli-

cations. First, there is no possibility of bias toward the native sequence because there was

none and the final sequence appears unrelated to anything already known. Next, the

calculation was quite unrestrained in sequence terms. The only restriction was that

polar residues be on the surface. This leaves one with the conclusion that this function

is implicitly incorporating enough negative design without stating it explicitly.

CONCLUSION

In principle, computational protein sequence design should be nearly impossible, but

if groups have given their programs names like “DESIGNER”[32,33] one might think the
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area is a finished story. Unfortunately, after studying the literature, one is still left with the

following questions:

1. Is protein sequence design largely a solved problem?

2. If not, is it possible with cost/energy functions similar to those currently in the

literature?

Some clues could be given by computational work, without the expense of visiting the

laboratory. For example, within the work traveling under the title of protein design,

there are many papers with very artificial restrictions on the permitted sequence changes.

It would be simple to see what happens when these are removed. The outcome may be

already well known, but unpublished. For those methods that appear to work without

restrictions, one could acquire some statistical data. A protein sequence optimization

calculation may once have taken many hours,[3] but with a different score function, search

algorithm or faster machines, now apparently takes minutes.[43] Kuhlman and Baker[43]

took advantage of this to optimize 108 sequences. Within this collection, they not only

found surprising similarity to native sequences, but also found correlations between

residues that seem to correspond to those observed in nature. Clearly, this kind of analysis

could be extended to other properties and to more sequences, but more important, could be

applied to the methods of other groups.

The validity of computational methods will be measured by laboratory work, but

progress is slow. The volume of literature on computational sequence optimization is

much bigger than the amount of experimental verification. Presumably, this is because

computer time is cheaper than laboratory work.

At the moment, all spectators in this field must wait to see if the automatic and general

design methods are as general as hoped. If so, it will be of interest to see if anyone can

identify the aspects of successful score functions that implicitly include the properties

of negative design.
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