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ABSTRACT We present an unusual
method for parametrizing low-resolution force
fields of the type used for protein structure
prediction. Force field parameters were deter-
mined by assigning each a fictitious mass and
using a quasi-molecular dynamics algorithm in
parameter space. The quasi-energy term fa-
vored folded native structures and specifically
penalized folded nonnative structures. The
force field was generated after optimizing less
than 70 adjustable parameters, but shows a
strong ability to discriminate between native
structures and compact misfolded alterna-
tives. The functional form of the force field was
chosen as in molecular mechanics and is not
table-driven. It is continuous with continuous
derivatives and is thus suitable for use with
algorithms such as energy minimization or
newtoniandynamics. Proteins 27:367–384, 1997.
r 1997Wiley-Liss, Inc.
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INTRODUCTION

Ideally, one would like to be able to predict protein
structures based only on the amino acid sequence
and without recourse to experiment. This may not be
realistic, but it may well be feasible to recognize
when a new sequence will adopt a known fold1–4 or
whether a proposed structure is totally misfolded.5

To do this, one needs some function of coordinates
that yields a number reflecting the fit of sequence
and structure. In molecular mechanics nomencla-
ture, this is a potential energy, but it might also be
referred to as a score6 or profile.7 The incentive to
develop such useful potential energy functions con-
tinually increases as more protein sequences are
determined and as the first complete genomes are
sequenced.
To be practical, such potential energy functions

are based on simple representations of proteins
using only one or two interaction sites per residue.
Beyond that, there is a multitude of approaches. For
example, functions may be defined in discrete (usu-
ally lattice) coordinates8–12 for the sake of speed or in
continuous space for detail. In this work, we concen-

trate only on continuous force fields. A less obvious,
but conceptually important distinction can be made
on the philosophy of the force field. Some force fields
can be seen as tightly connected to an underlying
physical basis in that they should in some way be an
average over physical terms.13–17 Alternatively, a
force field may be statistical in nature. Although it
will be some kind of average of the underlying
physical interactions, the functional forms may bear
little relation to common terms such as electrostatic
or Lennard-Jones potential energy functions. Be-
cause the functional forms are not physically based,
they may only be useful for a narrow range of
structures.
The force field in this work is of the simple

statistical type, which immediately limits its ability
to generalize. The parametrization procedure is based
on native and other compact conformations so one
would not expect it to extrapolate to unfolded confor-
mations. One can also see that, although we use
nomenclature from molecular mechanics, our ener-
gies bear no relation to any real potential energy.
Given these caveats, the aims of this force field

parametrization can be stated. The calculations are
based on a wide variety of proteins and should
encapsulate properties common to proteins in gen-
eral. The parameters will only be relevant to com-
pact structures, but they should be useful across
many sequences and folded conformations. The abil-
ity to generalize is further enhanced by using a small
number (,70) of adjustable parameters so as to
avoid fitting to noise in the dataset.18 This relatively
small number of parameters was brought about by
using only four kinds of interaction and grouping
interaction types (not amino acids) into classes.
The method of parametrization in this work is

quite unusual in the area of low-resolution force
fields. The procedure began by taking the idea of
Crippen and coworkers19,20 that the force field should
specifically penalize misfolded structures. This idea
was then cast into the form of a continuous pseudoen-
ergy function. The parameters were then given
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fictitious masses, treated like particles, and sub-
jected to quasi-newtonian dynamics. This dynamics
simulation was solely used as an optimization pro-
cess to improve initial estimates of parameters and
was in no way a physical simulation.

METHODS

The following sections describe the protein model,
interaction functions and parameters, and amethod-
ology for optimizing the parameters. To make this
interpretable, certain conventions are used. Super-
scripts are used to specify topological proximity, so
En,n11 may refer to an interaction energy of two
adjacent amino acids and sn,n13 would refer to a s
parameter for two residues with two intervening
residues. Lowercase subscripts refer to any pair of
residues, so rab is the distance between residues a
and b, regardless of their type. Force field param-
eters depend on topological proximity and amino
acid type, so one also needs a convention for specify-
ing the type or class of amino acid. An uppercase
subscript is used here, so eJ is a parameter for
residues of type J, and sXY

long is the s parameter for
interactions between residues of types X and Y at a
long topological distance.

Protein Model and Interaction Function

Energies were calculated as if they were true
potential energies, so the nomenclature is taken
from conventional molecular mechanics.
Each amino acid was represented by a single point

located at the Ca atom. These points then interacted
in one of four ways depending on their topological
proximity. The total potential energy of a protein was
calculated by summing four terms:

Etotal 5 Kn,n11 o
pseudo
bond

En,n11 1 Kn,n12 o
pseudo
angle

En,n12

1 Kn,n13 o
pseudo
torsion
angles

En,n13 1 K longo
other
pairs

E long (1)

Each of the four terms was weighted by an arbitrary
constant, K, as given in Table I.

The interaction between adjacent residues is analo-
gous to a bond potential energy in a normal force
field, although there is no real bond there. This gives
rise to the first term, En,n11, in Equation (1). Simi-
larly, one can define an energy term that depends on
the angle included by three adjacent residues. This is
the second term in Equation (1). Residues separated
by two intervening connected residues form a pseudo-
torsion angle and their interaction gives rise to the
En,n13 term in Equation (1). All other amino acid
pairs interact by a fourth kind of interaction, Elong.
Each of the terms in Equation (1) had a different
dependence on either parameters or amino acid
types, and each is described below.
Although some initial tests were performed using

a simple harmonic form for the pseudobond term,
this was replaced in final implementations. We used
the iterative algorithm, SHAKE21 to hold pseudo-
bonds to 3.81 Å, the typical distance between Ca

atoms in adjacent residues with trans peptide
bonds.12,16 This concedes some error due to the small
fraction of cis peptide bonds. The effect of this was
that energy from a pseudobond term was redistrib-
uted into the other terms of the force field.
A Lennard-Jones-like term was used for residues

separated by one intervening residue in the se-
quence. Considering three sequential residues i, j,
and k of types I, J, and K, the interaction energy
Eik
n,n12 depended on the type of central residue J and

the distance rik between residues i and k. The
interaction energy was calculated according to

Eik
n,n12(rik, eJ

n,n12, sJ
n,n12)

5 eJ
n,n12 35 1sJ

n,n12

rik 2
12

2 6 1s j
n,n,12

rik 2
10

4 . (2)

The energy has been written explicitly as a function
of force-field parameters, as well as the distance, to
highlight the fact that these were later treated as
adjustable quantities. This has been deliberately
cast so as to highlight the similarity with a Lennard-
Jones term in a molecular mechanics force field.22

sJ
n,n12 gives the distance of lowest energy and eJ

n,n12

gives the depth of the energy well at that distance.
The single uppercase subscript J reflects the fact
that the parameters for the n, n 1 2 interaction
depend only on the type of the central residue J.
When calculating the energy of a protein, the contri-
bution from Equation (2) was summed over every
sequential triplet of residues not spanning a chain
break.
The same functional form was used for residues

separated by two intervening residues, but with a
different set of parameters and different dependence
on parameters. Given four sequential residues i, j, k,
and l of types I, J, K, and L, the energy Eil

n,n13

depended on the types of the central pair of residues

TABLE I. RelativeWeights of
Force Field Terms

Terma Valueb
Interaction

type

Kn,n12 2.0 Pseudoangle
Kn,n13 1.0 Pseudotorsion
Klong 0.1 Long range
aRefers to Equation (1).
bDimensionless units.
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J and K, and the distance ril between the outer
residues. The interaction energy was calculated ac-
cording to

Eil
n,n13(ril, eJK

n,n13, sJK
n,n13)

5eJK
n,n13 35 1sJK

n,n13

ril 2
12

2 6 1sJK
n,n,13

ril 2
10

4 . (3)

This term’s contribution to the total energy of the
protein was calculated by summing over all sets of
four sequential residues that did not span a chain
break.
The last component of the potential energy, Elong

accounted, in a mean manner, for the tendency of
certain kinds of residues to adopt certain distances

Eij
long(rij, eIJ

long, sIJ
long)

5
1

11
eIJ
long 31s IJ

long

rij 2
12

2 12 1s IJ
long

rij 2
10

4 . (4)

This term was summed over every pair of residues
separated by more than three pseudobonds, but
within a cutoff of 15 Å. This included residues within
a protein, across subunits of polymeric proteins, and
any bound small peptides. The choice of cutoff size
was arbitrary, but ensured that, beyond a certain
size, the total energy would have a linear depen-
dence on the size of a protein.
No term was used for disulfide bridges, since it

was intended to use the force field when the location
of disulfide bridges would not be known. Their
structural effect was only included in a mean man-
ner along with all the other influences on parameters
for Equation (1).

Protein Set For Parametrization

For force field development, one requires a set of
calibration proteins. This set should be large, but
contain only reliable, well-defined structures with-
out sequence or structural homology between mem-
bers.
The basis for the calibration set was provided by

Hobohm and Sander23 and consisted of proteins with
less than 35% sequence homology. Structures with
crystallographic R factors greater than 0.25 or reso-
lutions worse than 2.8 Å were removed. Proteins
with missing internal Ca coordinates were deleted,
but those missing up to 7 C- or N-terminal residues
were included. Decisions about the resolution of
NMR structures were avoided by omitting them
entirely. Similarly, any proteins with large pros-
thetic groups or internal metal ions were omitted.
This provided an initial set of 108 proteins.
A further selection step was applied by calculating

the energy of each protein using the initial crude
parameter set described below. This suggested that

four proteins (1cid, 1omf, 1fai, and 1tnf) were of high
energy (data not shown). The energy was then
decomposed into the individual terms of Equation
(1). In each case, the high energy could be attributed
to an unusually short (#4.51 Å) n, n 1 2 Ca—Ca
distance. These entries were removed from the refer-
ence protein set, even though they met the criteria of
resolution and R factor. Figure 1 shows the potential
energy for each protein in the set as a function of size.
Energieswere calculated using the unrefined force field
and serve to show that there were no obvious outliers
or incorrect structures in the calibration set.
This resulted in the set of 104 proteins given in

Table II. The choice of proteins was somewhat arbi-
trary, but generally erred on the side of reliable
structures. This may have unfairly excluded high-
quality structures, but allowed such structures to be
used for testing.

Initial Parameter Estimation

The optimization of s parameters for Equations (2)
to (4) was a large calculation based on energy
differences between native andmisfolded structures.
Initial s values, however, were calculated using a
simple method based only on native structures and
designed to minimize the energy after summing
across all proteins.19 For example, for the pseudo-
angle term, Equation (2), the derivative of the energy
with respect to sJ

n,n12 was set to zero and solved for
for sJ

n,n12, assuming eJ
n,n12 5 1. This yielded an

expression.

sJ
n,n12 5 3 o

NJijk

r ik
2q

o
NJijk

r ik
212
4
1/(122q) (5)

Fig. 1. Total energy as a function of protein size. Energy is in
arbitrary units. Nres refers to the number of residues. Each point
represents a protein in the calibration set of 104 proteins. Energies
were calculated using the initial force field before parameter
dynamics.
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TABLE II. ProteinsUsed for Force FieldCalibration

Protein
codea

Number
of subunits

Number
of residues

Residue
coordinates
unknownb

Resolution
(Å)

R
factorc

1aaj 105 1.8 0.16
1aak 150 2.4 0.22
1aap 2 112 1.5 0.18
1aep 161 8NC 2.7 0.21
1apa 266 5N 2.3 0.17
1arb 268 5C 1.2 0.15
1ayh 214 2.0 0.16
1baa 243 2.8 0.20
1bgh 85 1.8 0.19
1bn2 354 87–95 2.8 0.23
1bov 5 345 2.2 0.18
1bsa 3 321 2.0 0.17
1cau 2 365 2.3 0.19
1cd8 114 2.6 0.19
1cdt 2 120 2.5 0.20
1cew 108 2.0 0.20
1cmb 2 208 1.8 0.20
1col 2 408 14NC 2.4 0.18
1cse 2 337 1.2 0.18
1ctf 68 1.7 0.17
1dfn 2 60 1.9 0.19
1dri 271 1.7 0.19
1dsb 2 376 2.0 0.17
1eaf 243 2.3 0.20
1ede 310 1.9 0.16
1end 137 1.6 0.20
1fas 61 1.8 0.15
1fba 4 1440 1.9 0.18
1gdh 2 640 2.4 0.19
1gmf 2 238 2.4 0.20
1hdd 2 114 2.8 0.22
1hle 2 375 2.0 0.18
1hsb 4 374 1.9 0.22
1hyp 75 1.8 0.19
1ifa 159 2.6 0.20
1ifc 131 1.2 0.17
1ipd 345 2.2 0.19
1lfb 77 2.8 0.21
1lis 131 1.9 0.19
1lts 7 741 2.0 0.18
1mpp 357 2.0 0.16
1nar 289 1.8 0.16
1ndk 148 2.2 0.20
1omp 370 1.8 0.21
1onc 104 1.7 0.18
1ppa 121 2.0 0.16
1ppb 3 298 1.9 0.16
1pgd 469 2.5 0.19
1pii 452 2.0 0.17
1plc 99 1.3 0.15
1poh 85 2.0 0.14
1pos 2 212 2.6 0.22
1rcb 129 2.2 0.22
1rtc 268 2.3 0.23
1rve 2 488 2.5 0.19
1sbp 309 1.7 0.18
1sgt 223 1.7 0.16
1shg 57 1.8 0.20
1shf 2 118 1.9 0.18
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where q 5 10 for the pseudoangle term of Equation
(2). The summation runs over all NJijk triplets of
sequential residues not spanning chain breaks and
across the protein calibration set and where the
central residue is of amino acid class J. The expres-
sion is still valid if class J contains more than one
amino acid type. Analogous expressions with q 5 10
and q 5 1 were used for the sJK

n,n13 and sIJ
long param-

eters in the pseudotorsion and long-range interac-
tion terms, respectively.
The various e parameters were calculated using a

method designed to weight those interactions which
showed a preference for a certain distance. Again,
one can use the example of the parameter for the
pseudoangle term as an example. If a certain residue
type X causes a very narrow range of n, n 1 2

TABLE II. (Continued)

Protein
codea

Number
of subunits

Number
of residues

Residue
coordinates
unknownb

Resolution
(Å)

R
factorc

1sim 381 2.0 0.19
1sry 2 842 2.5 0.18
1tbp 2 360 2.6 0.21
1tlk 103 2.8 0.18
1tml 286 1.8 0.18
1tpk 3 264 2.4 0.18
1ttb 2 254 1.7 0.16
1ula 289 2.8 0.20
1utg 70 1.3 0.23
1vaa 3 381 2.3 0.17
2alp 196 1.7 0.13
2cas 548 3.0 0.21
2cpl 164 1.6 0.18
2cro 65 2.4 0.19
2hpr 87 2.0 0.15
2liv 344 2.4 0.18
2pmg 2 1122 2.7 0.22
2pol 2 732 2.5 0.18
2rn2 155 1.5 0.20
2sas 185 2.4 0.20
2scp 2 348 2.0 0.18
2sga 181 1.5 0.13
2snv 151 2.8 0.20
2tgi 112 1.8 0.17
2zta 2 62 1.8 0.18
3adk 194 2.1 0.19
3cd4 178 2.2 0.20
3chy 128 1.7 0.15
3dpa 218 2.5 0.18
3eca 8 1308 2.4 0.15
3il8 68 2.0 0.19
3mon 8 376 2.8 0.19
3rp2 2 448 1.9 0.19
3sgb 2 235 1.8 0.12
3tgl 265 1.9 0.13
4blm 2 512 2.0 0.02
4enl 436 1.9 0.15
4gcr 174 1.5 0.18
4ins 4 102 1.5 0.15
4sgb 2 236 2.1 0.14
6taa 478 2C 2.1 0.20
7icd 414 2.4 0.18
8ilb 146 2.4 0.16
9rnt 104 1.5 0.14
9wga 2 342 1.8 0.17

aPDB acquisition code.
bNumber of residues at the N or C terminus for which no coordinates are available.
cCrystallographic R factor.
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distances, then the corresponding eX
n,n12 should be

large. If residues surrounding residues of class Y
occupy a wide range of distances, then the eY

n,n12

parameter should be small. This statistical tendency
can be quantified by first setting eJ

n,n12 5 1 in
Equation (2) for the amino acid type class J and then
summing over all relevant pairs to obtain

eJ
n,n12 5

o
NJijk

EJijk
n,n,12

NJijk

. (6)

As for the previous calculations, the summation runs
over all triplets of adjacent residues not spanning a
chain break and where the central residue is of
amino acid class J. The same expression, summed
over the appropriate pair energies was used for the
n, n 1 3 and long-range interactions to generate
en,n13 and elong parameters, respectively.
The example in Equation (6) is based on the n, n 1

2 term, but a physical basis for the method can be
seen by considering the example of the long-range
interaction parameters. A pair of residues such as
Asp and Arg are oppositely charged and may have a
strong statistical preference for interacting at a
certain distance (close to sAsp-Arg

long ). This distance of
minimum interaction energy will result in a maxi-
mum value for Equation (6). By contrast, Gly-Gly
pairs show little tendency to prefer any particular
distance. Energies calculated from Equation (4) will
often be near zero, and Equation (6) will yield a value
closer to zero. This interaction will have correspond-
ingly little weight in the final force field.

Parameter Classification

For the pseudoangle term, Equation (2), the choice
of parameter depended on the type of the central
residue, so there were 20 sn,n12 and 20 en,n12 param-
eters or, in this nomenclature, 20 amino acid classes,
each having one member. No parameter reduction
was applied to these terms.
For the n, n 1 3 and long-range parameters, an

algorithm was used to reduce the number of adjust-
able parameters and improve the method’s ability to
generalize.18 Both of these potential energy func-
tions depended on the type of two residues, so
without some classification, there would be (20 3 21)/
2 5 210 pairwise interaction parameters.
The aim of the algorithm was to produce a classifi-

cation that reduced the total energy summed across
the reference protein set. Physically, this could be
seen as looking for those interactions that were most
similar and putting them together in a class.
Themethod was applied separately for the n, n1 3

and long-range interaction terms and required that
for any group or class of pairwise interactions, one
could use Equation (5) to calculate a s (distance of
lowest energy) for that group or class. For example, a

class may consist of Asp-Cys and Glu-Leu interac-
tions. Then, for all interactions of these types across
the calibration set of 104 proteins, a s could be
calculated. Given some classification (indicated by
Cn), one can calculate a total energy over all interac-
tion classes and all proteins. This is the energyE(Cn)
associated with some classification, Cn.
For initialization, one treats each interaction type

separately and calculates a s value for each pairwise
interaction type using Equation (5). This forms a list
that can be sorted according to s value. The result
will be that pairs that tend to be close to each other
(small s) are at one end of the list and pairs that
repel (in a statistical sense) will be at the other end of
the list.
The classification procedure now operates by ini-

tially putting all interactions into a single class. So,
all members of the list form class 1 (indicated by the
lower index), C1

1, of the classification comprising only
one class (indicated by the upper index, nc). When
calculating the s value s1

1 for class C1
1, the summa-

tion in Equation (5) runs over all pairwise interac-
tion types of class C1

1. At each step n ($2) of the
classification procedure, one of the classes present is
partitioned into two parts such that the decrease in
the energy of classification Cn, E(Cn), with respect to
the energy E(Cn21) is maximized. This can be illus-
trated by an example. Figure 2 shows a simple case
with six s values, each corresponding to a different
pairwise interaction type. The target in this example
was arbitrarily set to 4 classes (nt 5 4). Initial
estimates of s were calculated for each interaction
type, sorted and put into one class (nc 5 1), as shown
in the top row of the figure. The s value of this class,
s1
1 depends on the summation over all six interaction

types in Equation (5). The second row shows np 5 5
possible places to divide the set, each marked by a
light line. Each position is tested in turn and the one
which produces the lowest energy selected. This
results in two classes (third row) where the first class
consists of interactions types 1 to 4 and the second of
interaction types 5 and 6. There are then np 5 4
possible ways to add a division (fourth row). Picking
the position that results in lowest energy splits the
first class. The result is shown on the fifth row with
three classes of s values. At the next step, there are
np 5 3 possible places to divide a class. Choosing one
of these results in the final row with four classes.
Since the number of classes equals the target num-
ber, (nc 5 nt), the algorithm stops.
The algorithm can now be described more for-

mally. Let C be some set (class) of pairwise interac-
tion types. Initially, there is one set,C1 containing all
pairwise interaction types (210 in this calculation).
By the end of the procedure there will be sets of
interaction types C1 . . . Cnt forming a classification
Cnt. The classification or set of interaction classes is
denoted S. Because one needs to rank classifications
in terms of energy, the algorithm also requires a set
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K where each member is an energy, calculated over
the whole set of calibration proteins. Each energy,
EDy will correspond to a trial classification CDy

nc11,
which is obtained from classificationCnc by partition-
ing class D (or CD

nc) of Cnc into two parts indicated by
y. So, one has EDy 5 E(CDy

nc11). For a pseudocode
description we use a generic SET data type:

variables

CI . . . Cnt SET /* Each set is a class of interactions */

S SET /*Classification Cnc, a set of C1 . . . Cnc */

K SET /* Set of energies */

L, L1, L2 SET /* Set of interactions */

pseudocode

C1 Z 5x 0 x is a pairwise interaction type6

sort C according to the s for each interaction type as calculated through

Equation (5)

S[ 5C16 /* The first member of the set of sets is C1 */

nc[ 1

while (nc , nt) 5

K[ B /* Initialize to empty set */

for (D[ each existing class C ) 5

for (y[ every possible division of classD)5

EDy [ total energy associated with classD and division y

K[ K < 5EDy6 /* Add this energy to set K */

6

6

sort set K according to EDy /* find the division giving lowest total energy */

let L be the set associated with the lowest energy member of K

splitL into componentsL1 andL2 according to the division y referenced byEDy

S[ S 2 L /* remove the set which is to be split */

S[ S < L1 /* Add first component of new set */

S[ S < L2 /* Add second component of new set */

nc[ nc 11

This scheme was used to reduce the number of n,
n 1 3 interaction pair types from 210 to 36 (nt 5 36)
and the long-range interaction pair types from 210 to
10 (nt 5 10). This was the same number of classes as
in early work by Crippen and Snow,19 but the classes
here were for interaction types rather than amino
acid types. This means, for example, that a Trp-Tyr
interaction may be in one class, while a Trp-Gly
interaction could be in another.

Generation and Initial Selection of
Alternative Structures

Compact misfolded alternative structures were
generated for each of the 104 native structures in the
calibration set. These alternative structures were
constructed by taking each native sequence and
threading it on to the Ca coordinates of every other
protein with at least the same number of resi-
dues.24,25 If the native structure had Nnat residues,
then the first alternative structure used residues 1 to
Nnat in the first larger (template) structure. The
second alternative structure came from the Ca coordi-
nates of residues 2 to Nnat 1 1 in the template
structure and so on. Thus, each template of Ntmpl

residues addedNtmpl 2Nnat 1 1 alternative conforma-
tions. Unlike in previous work, the number of alter-
native structures was then doubled by threading
each sequence backward on template coordinates.
Lastly, each native structure provided one more
alternative structure by threading the sequence
backward onto its own native coordinates. As tem-

Fig. 2. Algorithm for classification of pairwise interaction types. Each number (1–6) represents a
pairwise interaction. Subscripts indicate the class to which the s is assigned. Thin lines show
possible divisions of the set. Thick lines show divisions introduced during the progress of the
algorithm. Steps are described in text.
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plates, only unbroken protein subunits were used.
Proteins with chain breaks were threaded on to
larger template structures with a 1-residue gap at
the chain break.
Some alternative structures were then discarded.

An alternative structure, which was structurally
similar to a native, was not used. Ideally, redun-
dancy in the alternative structures would be re-
moved by comparing every alternative conformation
with every other alternative conformation, but this
would be a very expensive calculation for little gain,
since the calibration set of 104 proteins was chosen
so as to have little internal homology. Amore practi-
cal approach was to compare each alternative confor-
mation with the previously generated alternative
conformation and only accept it if it was significantly
different. This procedure was very efficient, since
successively generated alternative structures are
most likely to be similar to each other.
Structural similarity was defined by comparing

distance matrices from structures. This measure has
been called the distance matrix error (DME)26 or
distance root mean square difference (Drmsd)27 and is
given by

Drmsd(A, B) 5 3 2

Nres(Nres 2 1) oi,j

Nres

(rAij 2 rBij)24
1/2

(7)

whereNres is the number of residues, and rAij and rBij
are the distances between particles i and j in struc-
tures A and B, respectively. The threshold for struc-
tural similarity,D, has a cube root dependence on the
number of amino acids. We used the value from
Maiorov and Crippen27

Ds 5 24.54 1 2.36 (Nres)1/3 (8)

Although their prescription was based on the root
mean square difference of cartesian coordinates, the
effect in this work was that too low a value for Dsig

was used and the discrimination problem (below)
was made more difficult.

Parameter Dynamics and s Optimization

The initial parameter estimates, described above,
were based on native protein structures only. In the
next step, parameters were optimized so as to simul-
taneously disfavor incorrectly folded alternative
structures. This was done using an approximation to
newtonian dynamics in parameter space. The word
approximation is deliberately chosen, since the
method did not conserve (parameter) energy, the
parameter trajectories did not have continuous first
derivatives, and the scheme relied on a series of
pragmatic decisions necessary to make the calcula-
tions computationally tractable.
The e parameters [Eqs. (2) to (4)] were not opti-

mized. In our formulation, they are scaling factors

and so attempting to optimize them results in infi-
nite values. Only s values for the (n, n 1 2), (n,n 1

3) and long-range terms were subjected to dynamics.
The potential energy function for parameters con-

sisted of three terms. The first two were based on the
goals of the parametrization. First, native structures
should be of low energy. Second, misfolded alterna-
tives should be of higher energy. Before writing this
formally, one should note that the number of alterna-
tive structures per protein differs within the protein
calibration set and the proteins themselves differ in
the number of interactions they contribute. This
means that a large protein (few alternative struc-
tures) would dominate the native structure term,
while a small protein would dominate the alterna-
tive structure term. The scheme here first normal-
ized to account for the number of alternative struc-
tures for a protein and then scaled the total
parameter force due to each protein to be of the same
magnitude. The parameter energy is of a different
form to the pseudoenergies calculated for protein
structures, so it is denoted Es. For a single protein
and its alternative structures, Es is given by

Es(r, e, s) 5 Etotal(rNAT, e, s)

2
1

Nalt
o

a51

Nalt

Etotal(ra, e, s) 1
1

Nprot
Erestr(s) (9)

where rNAT is the coordinate vector for the native
structure and Nprot is the total number of proteins in
the calibration set. The summation in the second
term runs over the pseudoenergy of each of the Nalt

alternative structures, with coordinates labeled ra. e

and s are the parameter vectors as used in Equa-
tions (2) to (4). Erestr was a device to dissuade
individual parameters s of the vector s from enter-
ing unlikely areas of parameter space and consisted
of harmonic terms to enforce minimum and maxi-
mum s values (smin and smax, respectively), given by

Erestr(s) 5
5
krestr
2

(s 2 smin)2 if s , smin

5
krestr
2

(s 2 smax)2 if s , smax

(10)

krestr was set to 200 energy units/Å2 and smin to 3 Å.
smax was set to two pseudobond lengths (2 3 3.8 5 7.6
Å) for the n, n 1 2 pseudoenergy term [Eq. (2)] and
three pseudobond lengths (11.4 Å) for the n, n 1 3
pseudoenergy term [Eq. (3)].
An initial force, Fini, acting on the elements of s,

due to each protein and its alternative structures
was calculated by taking the opposite of the deriva-
tive of Equation (9) with respect to s. The final force
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vector, Ftotal was given by

Ftotal(r, e, s) 5
1

Nprot
o
I51

Nprot

1 Fini
I (r, e, s

0Fini
I (r, e, s 02 (11)

where Fini
1 is the force due to protein I and its

alternative structures and the summation runs over
all Nprot proteins in the calibration set. Forcing the
contribution of each protein to be the same does not
lead to discontinuities in the parameter trajectories,
but potentially violates energy conservation.
Parameter dynamicswere runwith arbitrary units.

Boltzmann’s constant was taken as 1, and, by trial
and error, a time step of 5 3 1024 was chosen for
integrating the equations of motion. Initial tempera-
tures were not taken from a maxwellian distribu-
tion, as is common practice in molecular dynamics
simulations. A less rigorous approach was used
where parameters were allowed to develop velocities
by moving in the field of Equation (9) and the
temperaturemaintained by coupling to a heat bath.28

Separate temperature baths were kept for slong pa-
rameters [Eq. (4)] and for the sn,n12 and sn,n13

parameters [Eqs. (2) and (3)]. The baths were set at
20 and 70 temperature units, respectively. Coupling
to both baths was initially set to 5 3 1023 time units
and this was increased by an exponential scheme to
7.1 3 1023 over 100 time steps.At each time step, the
SHAKE algorithm21 was applied to all native struc-
tures and their alternatives to bring pseudobonds to
regular lengths.
The scheme described was then modified to im-

prove its ability to discriminate correctly from incor-
rectly folded structures and to speed the calcula-
tions. The initial parameters showed some capability
for discrimination. That is, many misfolded struc-
tures were of higher energy than native conforma-
tions, and trial calculations suggested that they
remain of high energy after parameter dynamics.
Clearly, they contributed little of use to the force
experienced by the parameters. This led to a screen-
ing, applied every step of parameter dynamics, to
select misfolded alternative structures of low energy.
Intuitively, one might choose alternative structures
of energy lower than the corresponding native struc-
ture, but this would not be a strong enough condition
for a useful force field. One wants the difference
between correct and incorrect structures to be as
large as possible. To this end, a threshold energy
(Ethresh) was defined, which should be more positive
than the native energy by some positive number D.
We then define

E thresh
I 5 Enat

I 1 DI (12)

where the superscript I, denotes protein I, so Enat
I is

the energy of native structure I and Ethresh
I is the

threshold energy for protein I; An alternative confor-

mation a will only be used in the force calculation if
its energy Ea

I is below Ethres
I . From this point, one can

see that DI should be gradually increased as the force
field improves. This idea is shown in Figure 3. Each
point in the figure represents an alternative struc-
ture. The y-axis gives the energy corresponding to
each conformation. Points marked by dots are alter-
native structures of high energy and do not contrib-
ute to the force felt by parameters. Conformations
marked by crosses are alternative structures of low
energy, which should be used to calculate forces on
parameters. Initially (Fig. 3a), there are three confor-
mations below the energy threshold. After some
steps of parameter dynamics the force field has
improved and the energy of two of the alternative
structures rises. In Figure 3b, one of the three
crossed points is above the energy threshold. The
threshold should be raised as shown in Figure 3c, so
as to select the most important (lowest energy)
alternative structures. One still requires a method
for determining the way in which the threshold
difference DI is increased.
To this end, weak coupling28 was used. First, one

needs a switching function, to determine whether or
not an alternative structure, a, is below the thresh-
old relative to the native structure of protein I. This
is defined by

s(Enat’
I , Ea

I , DI ) 5 50 if Ea
I . Enat

I 1 DI

1 if Ea
I # Enat

I 1 DI
. (13)

This switching function can then be used to define
the average energy difference between low-energy
alternative structures and the threshold. If there are
Nprot proteins in the calibration set andDav is the aver-
age difference between threshold energies Ethresh

I and
the energies of alternative structures Ea

I , one can write

Dav 5
1

Nprot
o
I51

N prot

· 1oa51

Nalt
I

[(E nat
I 1 DI 2 Ea

I )s(Enat
I , Ea

I , DI)]

oo
a51
Nalt
I
s(Enat

I , Ea
I , DI ) 2 ’ (14)

To continue the analogy with weak coupling
schemes,28 a target or reference value, Dav

0 , was set,
and the goal was to maintain this at a constant
value. A scaling factor, l, was calculated from

l 5 31 1
dt

t 1
Dav
0

Dav
2 124

1/2

(15)

where dt is the time step of the integrator for the
parameter dynamics, and t is the coupling constant
that controls how rapidly changes are applied. Fi-
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nally, the coupling was applied by applying the
scaling to the energy difference DI:

DI(t) 5 lDI(t 2 dt) (16)

where DI(t) is the value of D at the current time step
and DI(t 2 dt) is the value of D1 at the previous time
step.
The constants in Equation (15) were set by trial

and error. The fraction dt/t was set to 0.1 and Dav
0 to

10.0. One should also note that DI(t) was different for
each protein I. Furthermore, DI(t) is not defined at
the first time step, so we arbitrarily set DI(0) 5 0EI 0,
the absolute value of the energy of the native struc-
ture of protein I. In practice, this value was probably
too large. During the short parameter dynamics
calculation, the system did not equilibrate with the
weak coupling bath, DI(t) tended to decrease, and the
number of alternative structures contributing to
Figure 3 the parameter forces decreased correspond-
ingly.

RESULTS

The first calculation was the classification of pa-
rameters for the n, n 1 3 and long-range interac-
tions, given in Tables III and IV, respectively. The
classifications were based on the initial estimates of
sn,n13 and slong before parameter dynamics and do
not include the influence of misfolded alternative
structures. The classes were ordered by the initial s
value and show some trends. For example, the
glycine column for the long-range interaction (Table
IV) shows that the residue is usually in classes 1, 2,
or 3, favoring the smallest distance of minimum
interaction energy. Similarly, the bulky aliphatic

leucine residue is usually in classes 6–10 with a
tendency to prefer interactions at larger distances.
While one should not read too much physical signifi-
cance into this initial calculation, one property is
clear. Classifying interaction types rather than amino
acids allows more flexibility in the functional form
without increasing the number of adjustable param-
eters. For example, one would expect the oppositely
charged Asp and Arg to be in different classes, but
the scheme here allows Asp and Arg to fall into the
same interaction class with respect to residues such
as Trp or Gly.
The 104 proteins in the calibration set resulted in

1.7 3 106 misfolded alternative structures. After
applying similarity criteria and the initial selection
based on energies, there remained 350,000 alterna-
tive structures (summed over all 104 proteins). This
set formed the basis for calculating forces on param-
eters during dynamics calculations, although all
1.7 3 106 alternative structures were used for test-
ing force field quality below. The example dynamics
calculation shown here ran for (coincidentally) 104
steps. The best results in terms of discriminating
correct and misfolded structures were obtained after
92 steps and are described below.
The results of the parameter dynamics calcula-

tions can bemost clearly seen by considering the best
and worst results. A good result would be one where
the native structure is of low energy compared to all
alternative structures. Using this measure, the pro-
tein giving the best result is a 60-residue toxin with
the PDB acquisition code, 1cdt shown in Figure 4.
The top panel shows the energy of alternative struc-
tures with respect to the energy of the native struc-
ture. Energies are divided by the number of residues

Fig. 3. Energy threshold for selection of alternative structures. r is some generalized coordinate
representing conformational space. E denotes conformational energy. Enat is the energy of a native
structure and Ethresh the corresponding threshold energy for alternative conformations. Crosses
mark conformations of energy less than the threshold that contribute to the calculation of forces on
the parameters. Dots mark the alternatives which are already of high energy and do not contribute to
the force calculation.
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as this allows an approximate comparison of pro-
teins. It is encouraging that the alternative struc-
tures are clearly of higher energy and the progress of
the dynamics calculation is shown in the middle
panel. This gives the number of alternative struc-
tures below the energy threshold [Eq. (12)] at each
time step. Although initially there are nearly 6,000
alternatives of low energy, the parameters are very
quickly driven to favor the native structure. The
bottom panel gives some insight into the path of the
calculation, showing how the slong parameters change
during the calculation.
Using the same criterion for quality, the worst

results came from the protein 1ppa and are shown in

Figure 5. The top panel again shows the energy of
alternative structures relative to the energy of the
native (after dividing by the number of residues).
More than half the alternative conformations are of
lower energy. There is no reason to suspect a problem
with native coordinates, but the middle panel may
give some clue as to why the parametrization has
been so unsuccessful for this protein. From around
step 45, the number of alternative structures below
the threshold actually increases steadily. The most
likely explanation is that the parameter trajectories
are being driven most strongly by the energy of other
proteins in the calibration set, unfortunately, at the
expense of 1ppa. It is also worth examining the

TABLE III. n,n1 3 InteractionPair Classes Identified byTheir IntegerClassNumber (1–36)

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

Ala 14 14 19 19 11 15 18 20 15 1 14 16 19 22 19 22 10 16 14 13
Arg 14 10 11 17 13 14 15 29 9 14 12 9 18 12 29 23 14 22 19 8
Asn 19 11 33 15 20 17 20 23 19 12 21 23 27 25 6 28 27 24 20 20
Asp 19 17 15 24 24 14 13 26 20 10 14 23 19 17 5 24 21 25 16 15
Cys 11 13 20 24 22 13 19 34 17 24 18 27 6 25 32 26 30 30 15 29
Gln 15 14 17 14 13 9 16 27 18 12 19 21 11 23 3 17 10 9 14 23
Glu 18 15 20 13 19 16 14 25 22 14 19 18 14 7 19 16 19 24 17 13
Gly 20 29 23 26 34 27 25 28 30 2 20 14 16 12 29 29 29 29 27 25
His 15 9 19 20 17 18 22 30 25 25 20 21 28 13 31 23 22 10 9 14
Ile 1 14 12 10 24 12 14 2 25 12 16 9 19 14 19 21 24 22 13 14
Leu 14 12 21 14 18 19 19 20 20 16 18 19 11 9 25 17 21 9 19 16
Lys 16 9 23 23 27 21 18 14 21 9 19 12 21 20 28 18 22 12 13 13
Met 19 18 27 19 6 11 14 16 28 19 11 21 10 20 22 20 10 17 27 16
Phe 22 12 25 17 25 23 7 12 13 14 9 20 20 12 30 29 9 8 15 11
Pro 19 29 6 5 32 3 19 29 31 19 25 28 22 30 35 6 14 13 28 22
Ser 22 23 28 24 26 17 16 29 23 21 17 18 20 29 6 24 22 29 10 25
Thr 10 14 27 21 30 10 19 29 22 24 21 22 10 9 14 22 27 4 4 20
Trp 16 22 24 25 30 9 24 29 10 22 9 12 17 8 13 29 4 36 7 8
Tyr 14 19 20 16 15 14 17 27 9 13 19 13 27 15 28 10 4 7 11 22
Val 13 8 20 15 29 23 13 25 14 14 16 13 16 11 22 25 20 8 22 8

TABLE IV. Long-Range InteractionPair Classes Identified byTheir IntegerClassNumber (1–20)

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser The Trp Tyr Val

Ala 5 7 8 5 4 7 6 2 9 4 6 7 3 6 4 2 5 6 5 6
Arg 7 5 5 4 4 8 5 2 5 5 8 9 8 8 4 4 3 5 4 7
Asn 8 5 4 7 7 8 6 2 8 8 9 3 8 5 3 6 7 8 5 8
Asp 5 4 7 8 10 8 9 2 4 9 9 3 6 4 7 6 4 8 9 9
Cys 4 4 7 10 1 8 9 2 9 4 6 8 3 2 4 7 3 3 3 6
Gln 7 8 8 8 8 4 8 2 6 8 9 8 8 6 6 3 3 7 8 7
Glu 6 5 6 9 9 8 6 4 8 7 10 3 7 7 9 5 5 9 7 8
Gly 2 2 2 2 2 2 4 1 3 3 3 3 3 2 2 2 2 2 2 3
His 9 5 8 4 9 6 8 3 3 8 9 3 6 4 7 7 6 2 6 9
Ile 4 5 8 9 4 8 7 3 8 5 6 7 4 7 8 7 7 6 4 4
Leu 6 8 9 9 6 9 10 3 9 6 8 9 6 7 8 7 9 6 6 6
Lys 7 9 3 3 8 8 3 3 3 7 9 3 9 7 3 4 3 3 3 8
Met 3 8 8 6 3 8 7 3 6 4 6 9 9 5 3 7 7 8 7 7
Phe 6 8 5 4 2 6 7 2 4 7 7 7 5 3 5 5 4 6 8 4
Pro 4 4 3 7 4 6 9 2 7 8 8 3 3 5 2 2 5 2 5 6
Ser 2 4 6 6 7 3 5 2 7 7 7 4 7 5 2 3 3 3 3 4
Thr 5 3 7 4 3 3 5 2 6 7 9 3 7 4 5 3 2 4 4 4
Trp 6 5 8 8 3 7 9 2 2 6 6 3 8 6 2 3 4 2 2 6
Tyr 5 4 5 9 3 8 7 2 6 4 6 3 7 8 5 3 4 2 5 5
Val 6 7 8 9 6 7 8 3 9 4 6 8 7 4 6 4 4 6 5 4
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bottom panel, again showing the slong parameters as
a function of time. After 104 steps, they have not
stopped fluctuating. If one was to pursue parameters
for this particular force field parametrization, a
longer calculation would be necessary.
An overview of the results is given in Figure 6.

This shows a comparison of the energies of alterna-
tive structures (relative to the native energy) for
1cdt, 1ppa, and the calibration set average. This last
histogram is obtained by summing over all native
and alternative structures and dividing the ordinate
by the number of proteins (104) and always dividing
the energy difference (Ealt 2 Enat) by the number of
residues in the native structure. In an approximate
statistical sense, the simple force field is quite power-
ful and usually able to discriminate correct (native)
structures from plausible, but incorrect, structures.
Unfortunately, it could not be deemed truly predic-
tive. For an application such as threading (testing
structures for a sequence), this particular parametri-
zation would yield too many false positives to be
useful.

The final results of the parametrization calcula-
tions are given in Tables V, VI, and VII. When
reading Tables V and VI it is important to remember
the amino acids and pairs of amino acids are the
central ones to each interaction. For example, the
first line of Table VI refers to Ala-Ile, so this param-
eter pertains to alanine and isoleucine as the j, k pair
of an i, j, k, l quartet. Viewed from a historical
perspective, this is similar to formalizing the ten-
dency of amino acids to be in certain secondary
structures and quantifying this geometrically. At the
same time, interpretation in terms of secondary
structure is not so straightforward. The n, n 1 2 and
n, n 1 3 parameters are determined in the field due
to all the proteins, which, in turn, depends on all the
parameters. This means the parameters reflecting
short-range interactions may be dominated by sec-
ondary structure, but would not be sufficient to
predict it. Furthermore, there is a more subtle
restriction on their use. The initial parameters re-
flect average geometric considerations from Equa-
tion (5), but the final parameters reflect the influence
of misfolded structures. For example, the sVal

n,n12 was
initially estimated to be 5.6 Å suggesting that when
a valine residue is at the center of a triplet of
residues there is a tendency for the outer two
residues to be at a relatively large distance.After the
parameter dynamics, this value becomes 2.7 Å sug-
gesting that the ability to distinguish correct from

Fig. 4. Progress of parametrization for protein 1cdt. Top:
Histogram showing the energy distribution of alternative structures
for 1cdt. Energies are relative to the native structure (Ealt 2 Enat)
and are divided by the number of residues in the native protein.
Energies were calculated with parameters after 92 steps of
dynamics. Middle: Number of alternative structures of low energy
(below the energy threshold) at each time step of the parameter
dynamics calculation. Bottom Value of the first 10 slong param-
eters (Table VII) at each time step in the parameter dynamics
calculation.

Fig. 5. Progress of parametrization for protein 1ppa. Panels
correspond to Figure 4.
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incorrect structures is enhanced by preferring a
short distance for this interaction.
The tables also contain information about the

relative weights of the interactions since the e param-

eters fromEquations (2)–(4) directly scale the energy
contribution of each term. For example, the sGly-Ile

n,n13

parameter given in Table VI is one of the shorter
distances, but sGly-Ile

n,n13 is the smallest in the table
(0.091 energy units) meaning that it is also the least
significant of the n, n 1 3 interactions.
One can again look for physical significance in the

results, bearing in mind that the influence of mis-
folded structures in the parameter dynamics tends
to weaken the physical significance of the param-
eters. Considering the long-range interaction param-
eters in Table VII, the Cys-Cys and Gly-Gly interac-
tion pairs show a preference for interactions at the
shortest distances (5.1 Å). This obviously reflects
disulfide bonds and the fact that glycine possesses
the smallest side chain. Beyond that, one would only
want to point to general trends such as the smaller
side chains usually preferring short interaction dis-
tances and interactions with bulky side chains such
as valine or leucine tending to prefer larger interac-
tion distances.
So far, we have only considered the force field’s

performance in recall. That is, how well the force
field works within the range of structures used to
construct it. It is more interesting to look at the
method’s ability to generalize. This is a measure of
its predictive ability for proteins not used in the
parametrization calculations. Ideally, one would per-
form a jackknife test, leaving each protein out of the
calculation and reserving it for testing. This would
be far too expensive computationally, but it is still
possible to test the force field outside of the calibra-
tion set. Choosing the proteins for calibration in-
volved ranking the set according to quality (resolu-
tion and R factor). The 10 proteins immediately
following the calibration set and some arbitrary
examples were then of good quality and given the
selection criteria, guaranteed to be nonhomologous
with the proteins used for calibration. Table VIII
gives the results for 10 structures under the columns
labeled ‘‘Before minimization.’’ The immediate im-
pression is that the parameters do not do much
better than a set of random numbers, and the results
range from excellent to bizarre. For 4pti, the discrimi-
nation is excellent with 99.8% of alternative struc-
tures being of higher energy. For 1abp, 99.9% of
alternative structures appear to be of lower energy
than the native. The reason for this is clear from the
results of other workers.19,25 A structure may be very
near in space to an energetic minimum, but of
apparently high energy. The remedy for this is to
compare structures after energy minimizing. This is
shown by the two columns labeled ‘‘After minimiza-
tion’’ in Table VIII. Native and alternative conforma-
tions were subjected to no more than 25 steps of
conjugate gradients minimization. From these re-
sults, it is clear that the force field does have a real
ability to discriminate correct from incorrectly folded

Fig. 6. Overall performance of parametrization. Each panel is
a histogram showing the energy distribution of alternative struc-
tures relative to the native. Bars to the left of zero show alternative
structures of energy lower than the corresponding native structure.
Top: Results for 1cdt. Middle: Results for 1ppa. Bottom: Results
summed over the 104 proteins of the calibration set and then
divided by the number of proteins.

TABLEV. n,n1 2 InteractionParameters

Class

sn,n12 (Å) en,n12

(energy)a Member Noccur
bInitial Final

1 5.470 5.249 1.460 Ala 2480
2 5.501 4.883 1.332 Arg 1356
3 5.535 5.170 1.454 Asn 1465
4 5.524 5.251 1.492 Asp 1677
5 5.679 6.225 1.194 Cys 595
6 5.461 5.002 1.412 Gln 1098
7 5.480 5.199 1.464 Glu 1762
8 5.581 4.136 1.256 Gly 2385
9 5.589 5.777 1.306 His 505
10 5.569 5.423 1.250 Ile 1581
11 5.546 5.731 1.406 Leu 2354
12 5.495 4.412 1.342 Lys 1830
13 5.513 5.107 1.304 Met 559
14 5.590 5.216 1.200 Phe 1141
15 5.259 4.235 0.960 Pro 1344
16 5.516 4.704 1.240 Ser 1811
17 5.626 3.948 1.220 Thr 1833
18 5.558 5.613 1.348 Trp 380
19 5.612 6.267 1.224 Tyr 1125
20 5.633 2.692 1.248 Val 1977

aArbitrary energy units.
bNumber of occurrences of this interaction in the calibration
protein set.
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TABLEVI. n,n1 3 InteractionParameters

Class

sn,n13 (Å)
en,n13

(energy)a Nmem
b Noccur

c MembersInitial Final

1 4.057 4.094 0.190 1 282 Ala-Ile
2 4.247 4.228 0.091 1 249 Gly-Ile
3 4.418 4.403 0.142 1 86 Gln-Pro
4 4.585 4.530 0.153 2 213 Thr-Trp, Thr-Tyr
5 4.715 4.703 0.250 1 148 Asp-Pro
6 4.777 4.601 0.227 3 352 Asn-Pro, Cys-Met, Pro-Ser
7 4.901 4.748 0.693 2 129 Glu-Phe, Trp-Tyr
8 4.958 4.816 0.565 4 373 Arg-Val, Phe-Trp, Trp-Val, Val-Val
9 4.988 4.626 0.646 9 935 Arg-His,Arg-Lys, Gln-Gln, Gln-Trp, His-Tyr, Ile-

Lys, Leu-Phe, Leu-Trp, Phe-Thr
10 5.012 4.858 0.609 8 919 Ala-Thr,Arg-Arg,Asp-Ile, Gln-Thr, His-Trp,Met-

Met,Met-Thr, Ser-Tyr
11 5.034 4.914 0.637 6 537 Ala-Cys,,Arg-Asn, Gln-Met, Leu-Met, Phe-Val,

Tyr-Tyr
12 5.053 4.786 0.665 9 1154 Arg-Leu,Arg-Phe,Asn-Ile, Gln-Ile, Gly-Phe, Ile-Ile,

Lys-Lys, Lys-Trp, Phe-Phe
13 5.070 4.681 0.683 10 1493 Ala-Val,Arg-Cys,Asp-Glu, Cys-Gln, Glu-Val, His-

Phe, Ile-Tyr, Lys-Tyr, Lys-Val, Pro-Trp
14 5.082 4.731 0.791 18 3163 Ala-Ala,Ala-Arg,Ala-Leu,Ala-Tyr,Arg-Gln,Arg-Ile,

Arg-Thr,Asp-Gln,Asp-Leu, Gln-Tyr, Glu-Glu,
Glu-Ile, Glu-Met, Gly-Lys, His-Val, Ile-Phe, Ile-
Val, Pro-Thr

15 5.095 4.898 0.780 7 977 Ala-Gln,Ala-His,Arg-Glu,Asn-Asp,Asp-Val, Cys-
Tyr, Phe-Tyr

16 5.108 5.028 0.787 9 1503 Ala-Lys,Ala-Trp,Asp-Tyr, Gln-Glu, Glu-Ser, Gly-
Met, Ile-Leu, Leu-Val, Met-Val

17 5.120 5.435 0.723 8 1040 Arg-Asp,Asn-Gln,Asp-Phe, Cys-His, Gln-Ser, Glu-
Tyr, Leu-Ser,Met-Trp

18 5.131 4.965 0.991 7 1082 Ala-Glu,Arg-Met, Cys-Leu, Gln-His, Glu-Lys, Leu-
Leu, Lys-Ser

19 5.146 5.031 0.789 16 2625 Ala-Asn,Ala-Asp,Ala-Met,Ala-Pro,Arg-Tyr, Asn-
His,Asp-Met, Cys-Glu, Gln-Leu, Glu-Leu, Glu-
Pro, Glu-Thr, Ile-Met, Ile-Pro, Leu-Lys, Leu-Tyr

20 5.161 5.687 0.548 12 1925 Ala-Gly,Asn-Cys,Asn-Glu,Asn-Tyr,Asn-Val, Asp-
His, Gly-Leu, His-Leu, Lys-Phe,Met-Phe,Met-
Ser, Thr-Val

21 5.172 6.123 0.678 7 1211 Asn-Leu,Asp-Thr, Gln-Lys, His-Lys, Ile-Ser, Leu-
Thr, Lys-Met

22 5.192 6.057 0.604 12 1447 Ala-Phe,Ala-Ser,Arg-Trp, Cys-Cys, Glu-His, His-
Thr, Ile-Trp, Lys-Thr,Met-Pro, Pro-Val, Ser-Thr,
Tyr-Val

23 5.209 5.907 0.704 7 1017 Arg-Ser,Asn-Gly,Asn-Lys,Asp-Lys, Gln-Phe, Gln-
Val, His-Ser

24 5.226 6.010 0.635 8 852 Asn-Trp,Asp-Asp,Asp-Cys,Asp-Ser, Cys-Ile, Glu-
Trp, Ile-Thr, Ser-Ser

25 5.247 5.428 0.498 9 1260 Asn-Phe,Asp-Trp, Cys-Phe, Glu-Gly, Gly-Val, His-
His, His-Ile, Leu-Pro, Ser-Val

26 5.270 5.957 0.511 2 391 Asp-Gly, Cys-Ser
27 5.291 6.321 0.480 7 747 Asn-Met,Asn-Thr, Cys-Lys, Gln-Gly, Gly-Tyr,Met-

Tyr, Thr-Thr
28 5.342 6.010 0.437 5 627 Asn-Ser, Gly-Gly, His-Met, Lys-Pro, Pro-Tyr
29 5.369 6.382 0.437 9 1548 Arg-Gly,Arg-Pro, Cys-Val, Gly-Pro, Gly-Ser, Gly-

Thr, Gly-Trp, Phe-Ser, Ser-Trp
30 5.427 6.861 0.403 4 265 Cys-Thr, Cys-Trp, Gly-His, Phe-Pro
31 5.493 5.883 0.491 1 63 His-Pro
32 5.651 5.823 0.164 1 68 Cys-Pro
33 5.727 6.873 0.733 1 82 Asn-Asn
34 5.899 6.639 0.164 1 127 Cys-Gly
35 5.985 6.819 0.414 1 48 Pro-Pro
36 8.001 8.669 0.854 1 8 Trp-Trp

aEnergy in arbitrary units.
bNumber of interaction types forming a class.
cNumber of times the interactions occur in the calibration set of proteins.
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structures. The worse results are obtained for 1ctx, a
71 residue, snake toxin whose conformation is domi-
nated by five disulfide bridges, rather than regular
secondary structure. The other weak results are for
1pcy, the apo form of plastocyanin, which normally
has an integral copper atom in situ. It is also clear
that the nearest local minima really are near to the

native structure. The last column of Table VIII
shows that no structure moves by more than 0.2 Å
(distance matrix difference) upon minimizing. To the
extent that 10 proteins represent a significant test,
the force field really is reflecting general properties
of protein folds, since all the test proteins were not
homologous to proteins used in the parametrization.

TABLEVII. Long-range InteractionParameters

Class

slong (Å) elong

(energy)a Nmem
b Noccur

c MembersInitial Final

1 5.128 5.081 0.053 2 53 846 Cys-Cys, Gly-Gly
2 5.719 5.225 0.054 21 801 072 Ala-Gly,Ala-Ser,Arg-Gly,Asn-Gly,Asp-Gly, Cys-

Gly, Cys-Phe, Gln-Gly, Gly-Phe, Gly-Pro, Gly-
Ser, Gly-Thr, Gly-Trp, Gly-Tyr, His-Trp, Pro-
Pro, Pro-Ser, Pro-Trp, Thr-Thr, Trp-Trp,
Trp-Tyr

3 5.958 5.500 0.056 31 982 810 Ala-Met,Arg-Thr,Asn-Lys,Asn-Pro,Asp-Lys,
Cys-Met, Cys-Thr, Cys-Trp, Cys-Tyr, Gln-Ser,
Gln-Thr, Glu-Lys, Gly-His, Gly-Ile, Gly-Leu,
Gly-Lys, Gly-Met, Gly-Val, His-His, His-Lys,
Lys-Lys, Lys-Pro, Lys-Thr, Lys-Trp, Lys-Tyr,
Met-Pro, Phe-Phe, Ser-Ser, Ser-Thr, Ser-Trp,
Ser-Tyr

4 6.093 6.031 0.057 28 910 175 Ala-Cys,Ala-Ile,Ala-Pro,Arg-Asp,Arg-Cys, Arg-
Pro,Arg-Ser,Arg-Tyr,Asn-Asn,Asp-His, Asp-
Phe,Asp-Thr, Cys-Ile, Cys-Pro, Gln-Gln, Glu-
Gly, His-Phe, Ile-Met, Ile-Tyr, Ile-Val, Lys-Ser,
Phe-Thr, Phe-Val, Ser-Val, Thr-Trp, Thr-Tyr,
Thr-Val, Val-Val

5 6.176 6.122 0.058 22 739 394 Ala-Ala,Ala-Asp,Ala-Thr,Ala-Tyr,Arg-Arg, Arg-
Asn,Arg-Glu,Arg-His,Arg-Ile,Arg-Trp, Asn-
Phe,Asn-Tyr, Glu-Ser, Glu-Thr, Ile-Ile, Met-
Phe, Phe-Pro, Phe-Ser, Pro-Thr, Pro-Tyr, Tyr-
Tyr, Tyr-Val

6 6.257 6.473 0.059 27 889 141 Ala-Glu,Ala-Leu,Ala-Phe,Ala-Trp,Ala-Val, Asn-
Glu,Asn-Ser,Asp-Met,Asp-Ser, Cys-Leu, Cys-
Val, Gln-His, Gln-Phe, Gln-Pro, Glu-Glu, His-
Met, His-Thr, His-Tyr, Ile-Leu, Ile-Trp, Leu-
Met, Leu-Trp, Leu-Tyr, Leu-Val, Phe-Trp, Pro-
Val, Trp-Val

7 6.344 7.362 0.060 28 933 553 Ala-Arg,Ala-Gln,Ala-Lys,Arg-Val,Asn-Asp,
Asn-Cys,Asn-Thr,Asp-Pro, Cys-Ser, Gln-Trp,
Gln-Val, Glu-Ile, Glu-Met, Glu-Phe, Glu-Tyr,
His-Pro, His-Ser, Ile-Lys, Ile-Phe, Ile-Ser, Ile-
Thr, Leu-Phe, Leu-Ser, Lys-Phe,Met-Ser,Met-
Thr,Met-Tyr,Met-Val

8 6.470 7.232 0.060 30 831 759 Ala-Asn,Arg-Gln,Arg-Leu,Arg-Met,Arg-Phe,
Asn-Gln,Asn-His,Asn-Ile,Asn-Met,Asn-Trp,
Asn-Val,Asp-Asp,Asp-Gln,Asp-Trp, Cys-Gln,
Cys-Lys, Gln-Glu, Gln-Ile, Gln-Lys, Gln-Met,
Gln-Tyr, Glu-His, Glu-Val, His-Ile, Ile-Pro,
Leu-Leu, Leu-Pro, Lys-Val, Met-Trp, Phe-Tyr

9 6.662 7.833 0.061 19 665 929 Ala-His,Arg-Lys,Asn-Leu,Asp-Glu,Asp-Ile,
Asp-Leu,Asp-Tyr,Asp-Val, Cys-Glu, Cys-His,
Gln-Leu, Glu-Pro, Glu-Trp, His-Leu, His-Val,
Leu-Lys, Leu-Thr, Lys-Met,Met-Met

10 6.942 7.657 0.063 2 81 302 Asp-Cys, Glu-Leu
aEnergy in arbitrary units.
bNumber of interaction types forming a class.
cNumber of times the interactions occur in the calibration set of proteins.
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These results are disappointing in that they sug-
gest that a force field of this type would be slow for
practical threading applications as it would only be
useful after energy minimization. It also suggests
that the inverse twelfth power repulsive terms in
Equations (2)–(4) increase too steeply. In some cases,
the native structure had a huge Elong contribution
mostly due to just one or two pairs of residues at a
short distance (data not shown). This result is not a
surprise, given this force field, but it is not clear why
similar results are not seen with table-driven force
fields2,31 based on a simple Boltzmann relation or
perhaps whether they do sometimes occur. Amino
acid pairs are sometimes present at unusually short
distances in native structures. Statistically, these
should be poorly represented and should give rise to
correspondingly high energies in table-based force
fields.

DISCUSSION

The results show the feasibility of an unusual
method for force field parametrization, although this
implementation was certainly not ideal. Little at-
tempt wasmade to optimize technical details such as
the dynamics temperature or temperature coupling.
Unfortunately, it is almost impossible to know ideal
values for constants that define the dynamic behav-
ior in parameter space. One can compare this with
the field of protein molecular dynamics (MD) simula-
tions that is relatively mature, but where analogous
quantities are often chosen from experience rather
than rational forethought. A simulation in param-
eter space should be based on the shape of the
parameter energy hypersurface, but, to continue the
comparison with protein simulations, this surface is
still not well understood in the field of protein MD.29

The weakest point of this calculation is probably not

whether or not the some control value was optimal,
but rather the short length of the calculation; 100
time steps is not even a cursory peek in parameter
space, let alone the thorough search one would like.
It is certainly not enough to see convergence of the
parameters. One strength of the optimization proce-
dure here was the selection of alternative structures
for calculating forces. From one point of view, this is
an approximation to make the calculations faster;
only alternative structures of low energy contributed
to the force calculation. At the same time, there is a
more subtle benefit. Every alternative structure
contributes local minima and maxima to the total
parameter energy surface. Removing less important
alternative structures must smooth the energy sur-
face and make searching easier. Obviously, this is an
observation of principle rather than a quantitative
statement.
There are also some aspects of the parameter

optimization that have a systematic effect on param-
eters. For example, a scheme without any scaling of
contributions from different proteins would be influ-
enced most by the native structures of larger pro-
teins (which contain the most interactions) and the
alternative structures of smaller proteins (which
have have the most misfolded alternatives). The
scheme used here has replaced this by a different
bias [Eq. (11)].
The parametrization scheme and use of misfolded

structures may also limit the application areas of the
force field. By definition, a conventional molecular
mechanics force field has its minima located at
positions of minimum energy. This force field differs
in that parameters are not chosen solely on the basis
of native structures. Minima are, of course, located
at pseudoenergy minima, but these are positioned so
as to optimize discrimination ability, rather than

TABLEVIII. Testing of Force FieldGeneralization

Protein Nres
a Nalternatives

b

Low-energy alternatives

rms
shift e
(Å)

Before
minimization

After
minimization

Nc %d Nc %d

4pti 58 37 878 57 0.2 1 0.0 0.07
1sn3 65 36 024 3 172 8.8 1 0.0 0.13
1ctx 71 34 501 11 699 33.9 1 489 4.3 0.15
1pcy 99 27 998 3 137 11.2 498 1.8 0.12
1lyz 129 22 558 1 275 5.7 0 0.0 0.16
4fxn 138 21 130 8 967 42.4 0 0.0 0.13
2sns 141 20 662 14 062 68.1 25 0.0 0.14
1rhd 293 5 286 5 249 99.3 0 0.0 0.15
1abp 306 4 571 4 565 99.9 0 0.0 0.17
5cpa 307 4 516 0 0.0 0 0.0 0.18
3tln 316 4 047 43 1.1 0 0.0 0.17

aNumber of residues.
bNumber of alternative conformations generated.
cNumber of alternatives with energy lower than that of the native structure.
dPercentage of alternatives with energy lower than that of the native structure.
eRoot-mean-square distance matrix difference of the native structure before and after minimization.
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reproduce native structures. This means that math-
ematically, one could use the force field for newto-
nian simulations, but the structures of low pseudoen-
ergy may not be physically realistic configurations.
This also means that the force fieldmay not be useful
for looking for errors in structures, an application
area possible with other protein scoring functions.5,30

This type of force field may be useful for grossly
wrong structures such as mistraced crystallographic
density, since that kind of error will produce compact
misfolded structures similar to the parametrization
data. It may not be so useful detecting smaller errors
in structures.
The effect of other implementation choices is less

clear. During the parameter dynamics, forces were
calculated based on crystallographic coordinates of
native structures. As shown in the Results section,
energies of structures are only useful after energy
minimizing. This is clearly a disadvantage when
compared to table-based force fields, which produce
good results directly from crystallographic coordi-
nates.2,31

While one can speculate on the effects of the
optimization method, a more fundamental question
is the suitability of the form of interaction functions.
Clearly, the set of functional forms has limitations,
but it is not clear what the weakest aspects are and
where it could be most profitably enhanced. As
described in the Results section, the twelfth power
repulsive term increases too quickly. Some weak-
nesses are highlighted by other workers. For ex-
ample, our force field uses isotropic interactions
between Ca atoms, but this is only a poor representa-
tion of the anisotropic interactions of real amino
acids.31 The single-well interaction functions [Eqs.
(2)– (4)] are not an ideal fit to the data when one
considers published distributions of amino acid pair
distributions,2,32 and the exponents in the potential
energy terms are also quite arbitrary. One could well
argue for 8–6 exponents14,25 or 12–10 exponents.19

There are even more fundamental questions about
the most appropriate formulation. For example, we
have an n, n 1 3 interaction where the choice of
parameters depends on the central (n 1 1 and n 1 2)
amino acids.19,25 This recognizes that amino acids
have a statistical preference for themiddle of specific
secondary structures. By contrast, other workers
have chosen parameters for the n, n 1 3 interaction
based on the outer (n and n 1 3) residues.2,31 It
might appear that this is an irreconcilable differ-
ence, but the best answer probably lies between the
approaches. Considering the example of the n, n 1 3
term, there must be a contribution from both central
and outer residues to the interaction. Given a trac-
table methodology for generating force fields, we
hope to resolve points like this in a quantitative
manner.
Possibly, the biggest omission is the lack of an

explicit solvation potential energy term. In fact,
there is evidence that this kind of term alone may be

successful in recognizing correct folds.2,33,34 Solva-
tion effects are included in our force field in the same
way as all structural influences affect the final
parameters. The weakness is that our Lennard-
Jones-like interactions may not be well suited to
include the influence of solvent. If one wanted to
justify our nonoptimal functional form, it is interest-
ing to note that an explicit solvent term based on a
property such as solvent-exposed surface area may
not be necessary, and some workers have achieved
remarkable results modeling the hydrophobic effect
with very few parameters.35,36,37

Viewing the force field generation as an exercise in
model fitting, the effect of a badly chosen functional
form is clear. The fitting has been conducted on a
small set of proteins and reproduces the data well
within that range. The worse the functional form, the
less likely the fitting is to be useful outside of that range.
The functional form also places limitations on the

areas of application, as does the parametrization
methodology, discussed above. With interaction sites
at only Ca positions, this is a low-resolution force
field and not necessarily sensitive to small changes
or errors in structure. The force field is also achiral,
so it will never be able to distinguish between mirror
images such as right- or left-handed helices. This is
obviously not a problem if it is only challenged with
alternate structures generated from other native folds.
The force field parameters are also a reflection of

the choice of proteins in the calibration set and the
experimental conditions used in structure determina-
tion. This means that the results are influenced by a
range of pH, salt concentrations, and so on. Neverthe-
less, the simple force field is rather adept at recogniz-
ing correct structures, regardless of their origin or
experimental conditions. Presumably, the force field
is biased toward soluble globular proteins under
conditions most often used by crystallographers. It
may well produce wrong answers outside of this set.
The success of a simple force field is the more

surprising, considering the physical factors that go
toward protein folding. If one could state that all the
protein structures were at free-energy minima, then
one could say that the force field is a fitting to
underlying physical principles. If one believes that
some protein structures are kinetically trapped local
minima, then the force field is an ill-defined mixture
of energetic principles and the kinetics of protein
folding.
One can continue reasoning in this vein and note

other influences that are neglected in the force field.
We assume there are 20 amino acids interacting
without any interference, but this is probably not the
case. The set of proteins probably includes some
conformations that are only viable due to bound
metal ions, and there may be sets of acidic residues
that are unusually close to each other due to coordi-
nated anions. Many proteins include poorly defined
residues whose coordinates are simply a reflection of
the crystallographic refinement programme. Finally,
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one should note that, even thoughwe applied criteria
based on resolution and R factors, a set of about 100
structures almost certainly includes misinterpreted
electron density and maybe even mistakes in amino
acid sequences.

CONCLUSIONS

This work has not produced a final force field for
protein structure recognition. The tests on proteins
outside of the calibration set show too many false
positives (low energy structures) to be of direct
practical use. Energy minimization is required to
obtain significant discrimination between native and
misfolded structures. The work does, however, con-
tain a number of improvements over other ap-
proaches to determining force fields. The use of
quasi-newtonian dynamics is interesting because
there is an implicit assumption that there is a
volume of parameter space that will provide an
acceptable force field and that one only needs to find
some point within that volume. The overall form of
the force field is not innovative, but some aspects are
a distinct improvement over other approaches. Clas-
sifying interaction types rather than residues allows
more flexibility in the fitting operation without in-
creasing the number of parameters and the param-
eter classification algorithm is a rational method for
decreasing the number of adjustable parameters.
A truly systematic exploration of force field func-

tional forms will probably be beyond the scope of
practical computations for some time. However, the
framework developed here should allow a reliable
and reproducible scheme for building and testing
simple force fields for protein structure prediction.
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